首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Monte Carlo simulations have been applied for evaluating the reliability of parameter estimates as well as for testing models in radioligand saturation binding experiments. Scatchard analysis was compared to the nonlinear least-square curve fitting method for one-site saturation binding curves. It was found that linear regression analysis from the transformed data in the Scatchard plot yielded generally less accurate parameter estimates than nonlinear regression analysis of untransformed data. The advantage of the nonlinear least-squares curve fitting method was especially pronounced in cases where the scatter and number of data points, as well as the radioligand concentration range, were chosen similar to less optimal experimental conditions. Under such circumstances, several KD and Bmax values derived by Scatchard analysis led to physically impossible negative values whereas the same data analyzed by nonlinear regression yielded reasonable parameter estimates. Furthermore, it was found that for both means of analysis, KD and Bmax correlated positively. In another set of Monte Carlo experiments, saturation binding curves involving two receptor sites were generated and subsequently analyzed according to both a one-site and a two-site model. The confidence with which one is able to distinguish the two-site model from nonlinear least-squares curve fitting was then estimated for optimal, as well as for, less ideal experimental condigions.  相似文献   

2.
《Plant Ecology & Diversity》2013,6(2-3):189-200
Background: Many researchers have simply recorded first flowering dates, while others have recorded the full extent of flowering. Such flowering curves show the rate of increase and decrease in flowering, as well as the day on which flowering is a maximum.

Aim: To develop objective statistical methods for the estimation and comparison of flowering curves, with particular emphasis on the date of maximal flowering.

Methods: We considered data collected either as percentages or as actual counts of numbers of flowers. We developed appropriate techniques for fitting regression curves involving non-linear least squares and Poisson regression, including a new generalisation of the epsilon-skew-normal curve.

Results: Our generalised regression curve was found to be sufficiently flexible to provide good estimates of flowering in a wide variety of situations. The five parameters of this curve have a direct and straightforward interpretation, namely the date and magnitude of maximum flowering, along with the spread, skewness and kurtosis of flowering. The method of maximum likelihood was used to provide estimates and confidence limits for the parameters and to compare Crocosmia flowering curves over eight consecutive years.

Conclusions: Regression curves, particularly those of the generalised skew-normal, give an effective, practical and objective procedure for estimating and comparing flower curves.  相似文献   

3.
The nonlinear and 3 linearized forms of the integrated Michaelis-Menten equation were evaluated for their ability to provide reliable estimates of uptake kinetic parameters, when the initial substrate concentration (S0) is not error-free. Of the 3 linearized forms, the one where t/(S0–S) is regressed against ln(S0/S)/(S0–S) gave estimates ofV max and Km closest to the true population means of these parameters. Further, this linearization was the least sensitive of the 3 to errors (±1%) in S0. Our results illustrate the danger of relying on r2 values for choosing among the 3 linearized forms of the integrated Michaelis-Menten equation. Nonlinear regression analysis of progress curve data, when S0 is not free of error, was superior to even the best of the 3 linearized forms. The integrated Michaelis-Menten equation should not be used to estimateV max and Km when substrate production occurs concomitant with consumption of added substrate. We propose the use of a new equation for estimation of these parameters along with a parameter describing endogenous substrate production (R) for kinetic studies done with samples from natural habitats, in which the substrate of interest is an intermediate. The application of this new equation was illustrated for both simulated data and previously obtained H2 depletion data. The only means by whichV max, Km, and R may be evaluated from progress curve data using this new equation is via nonlinear regression, since a linearized form of this equation could not be derived. Mathematical components of computer programs written for fitting data to either of the above nonlinear models using nonlinear least squares analysis are presented.  相似文献   

4.
Cardiac muscle tissue during relaxation is commonly modeled as a hyperelastic material with strongly nonlinear and anisotropic stress response. Adapting the behavior of such a model to experimental or patient data gives rise to a parameter estimation problem which involves a significant number of parameters. Gradient-based optimization algorithms provide a way to solve such nonlinear parameter estimation problems with relatively few iterations, but require the gradient of the objective functional with respect to the model parameters. This gradient has traditionally been obtained using finite differences, the calculation of which scales linearly with the number of model parameters, and introduces a differencing error. By using an automatically derived adjoint equation, we are able to calculate this gradient more efficiently, and with minimal implementation effort. We test this adjoint framework on a least squares fitting problem involving data from simple shear tests on cardiac tissue samples. A second challenge which arises in gradient-based optimization is the dependency of the algorithm on a suitable initial guess. We show how a multi-start procedure can alleviate this dependency. Finally, we provide estimates for the material parameters of the Holzapfel and Ogden strain energy law using finite element models together with experimental shear data.  相似文献   

5.
6.
General expressions are derived for the limiting slopes and intercepts of graphical representations of experimental binding data in either the Scatchard or the “dose-response” co-ordinate systems. We apply a previously formulated general model that includes heterogeneity and/or cooperativity of receptor affinity. One must establish or assume a physical chemical mechanism in order to fully interpret these limiting slopes and intercepts. However, they do provide satisfactory initial estimates for the binding parameters, for use in a non-linear least squares curve fitting approach using an exact model.  相似文献   

7.
J J Tiede  M Pagano 《Biometrics》1979,35(3):567-574
The minute concentrations of many biochemically and clinically important substances are currently estimated by radioimmunoassay (RIA). Traditionally, the most popular approaches to the statistical analysis of RIA data have been to linearize the data through transformation and fit the calibration curve using least squares or to directly fit a nonlinear calibration curve using least squares. Estimates of the hormone concentration in patients are then obtained using this curve. Unfortunately, the transformation is frequently unsuccessful in linearizing the data. Furthermore, the least squares fit can lead to erroneous results in both approaches since the many sources of error which exist in the RIA process often result in outlier observations. In this paper, an approach to the analysis of RIA data which incorporates robust estimation methods is described. An algorithm is presented for obtaining the M-estimates of nonlinear calibration curves. The curves to be fitted are modified hyperbolae based on 12 to 16 observations. A procedure, based on the application of the Bonferroni Inequality, is presented for obtaining tolerance-like interval estimates of the concentration of the hormone of interest in the patients. Results of simulations are cited to support the method of construction of confidence bands for the fitted calibration curve. Data obtained from the Veteran's Hospital, Buffalo, New York are used to illustrate the application of the algorithm which is presented.  相似文献   

8.
Analysis of sedimentation velocity data for indefinite self-associating systems is often achieved by fitting of weight average sedimentation coefficients (s(20,w)) However, this method discriminates poorly between alternative models of association and is biased by the presence of inactive monomers and irreversible aggregates. Therefore, a more robust method for extracting the binding constants for indefinite self-associating systems has been developed. This approach utilizes a set of fitting routines (SedAnal) that perform global non-linear least squares fits of up to 10 sedimentation velocity experiments, corresponding to different loading concentrations, by a combination of finite element simulations and a fitting algorithm that uses a simplex convergence routine to search parameter space. Indefinite self-association is analyzed with the software program isodesfitter, which incorporates user provided functions for sedimentation coefficients as a function of the degree of polymerization for spherical, linear and helical polymer models. The computer program hydro was used to generate the sedimentation coefficient values for the linear and helical polymer assembly mechanisms. Since this curve fitting method directly fits the shape of the sedimenting boundary, it is in principle very sensitive to alternative models and the presence of species not participating in the reaction. This approach is compared with traditional fitting of weight average data and applied to the initial stages of Mg(2+)-induced tubulin self-associating into small curved polymers, and vinblastine-induced tubulin spiral formation. The appropriate use and limitations of the methods are discussed.  相似文献   

9.
Making sound proteomic inferences using ELISA microarray assay requires both an accurate prediction of protein concentration and a credible estimate of its error. We present a method using monotonic spline statistical models (MS), penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict ELISA microarray protein concentrations and estimate their prediction errors. We contrast the MSMC (monotone spline Monte Carlo) method with a LNLS (logistic nonlinear least squares) method using simulated and real ELISA microarray data sets.MSMC rendered good fits in almost all tests, including those with left and/or right clipped standard curves. MS predictions were nominally more accurate; especially at the extremes of the prediction curve. MC provided credible asymmetric prediction intervals for both MS and LN fits that were superior to LNLS propagation-of-error intervals in achieving the target statistical confidence. MSMC was more reliable when automated prediction across simultaneous assays was applied routinely with minimal user guidance.  相似文献   

10.
A method for fitting experimental sedimentation velocity data to finite-element solutions of various models based on the Lamm equation is presented. The method provides initial parameter estimates and guides the user in choosing an appropriate model for the analysis by preprocessing the data with the G(s) method by van Holde and Weischet. For a mixture of multiple solutes in a sample, the method returns the concentrations, the sedimentation (s) and diffusion coefficients (D), and thus the molecular weights (MW) for all solutes, provided the partial specific volumes (v) are known. For nonideal samples displaying concentration-dependent solution behavior, concentration dependency parameters for s(sigma) and D(delta) can be determined. The finite-element solution of the Lamm equation used for this study provides a numerical solution to the differential equation, and does not require empirically adjusted correction terms or any assumptions such as infinitely long cells. Consequently, experimental data from samples that neither clear the meniscus nor exhibit clearly defined plateau absorbances, as well as data from approach-to-equilibrium experiments, can be analyzed with this method with enhanced accuracy when compared to other available methods. The nonlinear least-squares fitting process was accomplished by the use of an adapted version of the "Doesn't Use Derivatives" nonlinear least-squares fitting routine. The effectiveness of the approach is illustrated with experimental data obtained from protein and DNA samples. Where applicable, results are compared to methods utilizing analytical solutions of approximated Lamm equations.  相似文献   

11.
We describe a new dynamic kinetic simulation program that allows multiple data sets to be fit simultaneously to a single model based on numerical integration of the rate equations describing the reaction mechanism. Unlike other programs that allow fitting based on numerical integration of rate equations, in the dynamic simulation rate constants, output factors, and starting concentrations of reactants can be scrolled while observing the change in the shape of the simulated reaction curves. Fast dynamic simulation facilitates the exploration of initial parameters that serve as the starting point for nonlinear regression in fitting data and facilitates exploration of the relationships between individual constants and observable reactions. The exploration of parameter space by dynamic simulation provides a powerful tool for learning kinetics and for evaluating the extent to which parameters are constrained by the data. This feature is critical to avoid overly complex models that are not supported by the data.  相似文献   

12.
We use data from the literature to compare two statistical procedures for estimating mass (or size) of quadrupedal dinosaurs and other extraordinarily large animals in extinct lineages. Both methods entail extrapolation from allometric equations fitted to data for a reference group of contemporary animals having a body form similar to that of the dinosaurs. The first method is the familiar one of fitting a straight line to logarithmic transformations, followed by back-transformation of the resulting equation to a two-parameter power function in the arithmetic scale. The second procedure entails fitting a two-parameter power function directly to arithmetic data for the extant forms by nonlinear regression. In the example presented here, the summed circumferences for humerus plus femur for 33 species of quadrupedal mammals was the predictor variable in the reference sample and body mass was the response variable. The allometric equation obtained by back-transformation from logarithms was not a good fit to the largest species in the reference sample and presumably led to grossly inaccurate estimates for body mass of several large dinosaurs. In contrast, the allometric equation obtained by nonlinear regression described data in the reference sample quite well, and it presumably resulted in better estimates for body mass of the dinosaurs. The problem with the traditional analysis can be traced to change in the relationship between predictor and response variables attending transformation, thereby causing measurements for large animals not to be weighted appropriately in fitting models by least squares regression. Extrapolations from statistical models obtained by back-transformation from lines fitted to logarithms are unlikely to yield reliable predictions for body size in extinct animals. Numerous reports on the biology of dinosaurs, including recent studies of growth, may need to be reconsidered in light of our findings.  相似文献   

13.
A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible.  相似文献   

14.
M Hühn 《Génome》2000,43(5):853-856
Some relationships between the estimates of recombination fraction in two-point linkage analysis obtained by maximum likelihood, minimum chi-square, and general least squares are derived. These theoretical results are based on an approximation for the multinomial distribution. Applications (theoretical and experimental) with RFLP (restriction fragment length polymorphism) markers for a segregating F2 population are given. The minimum chi-square estimate is slightly larger than the maximum likelihood estimate. For applications, however, both estimates must be considered to be approximately equal. The least squares estimates are slightly different (larger or smaller) from these estimates.  相似文献   

15.
Cardiac output is estimated by least squares fitting of a model of pulmonary gas exchange to measurements of respiratory gas composition obtained with a mass spectrometer during a rebreathing maneuver. This new technique estimates cardiac output on spontaneously breathing subjects at rest and requires neither central venous nor arterial blood samples. Principal features of the technique are the use of multiple gases simultaneously in the analysis, the use of a mathematical model for breath-to-breath evaluation of gas exchange, and simultaneous estimation of gas exchange and alveolar gas tensions with the same instrumentation. The technique is compared with thermal dilution estimates in dogs before and during hemorrhagic shock. Two-thirds of these estimates were within 20% of one another. The standard deviation of replication was 15%. Shortcomings, possibilities for improvement, and possible applications are discussed.  相似文献   

16.
The separate interaction of the substrate fructose 1,6-bisphosphate and a metal ion cofactor Mn2+ with neutral hexosebisphosphatase has been studied under equilibrium conditions at pH 7.5 with gel filtration and electron paramagnetic resonance measurements, respectively. Binding data for both ligands to the enzyme yielded nonlinear Scatchard plots that analyze in terms of four negatively cooperative binding sites per enzyme tetramer. Graphical estimates of the binding constants were refined by a computer searching procedure and nonlinear least squares analysis. These results are qualitatively similar to those obtained from binding studies involving teh alkaline enzyme, a modified form of hexosebisphosphatase whose pH optimum is in the alkaline pH region. Both forms of the enzyme enhance the proton relaxation rate of water protons by a factor of approximately 7 to 8 at 24 MHz, demonstrating similar metal ion environments. Teh activator Co(III)-EDTA did not affect Mn2+ binding to the neutral enzyme. In the presence of (alpha + beta)methyl-D-fructofuranoside 1,6-bisphosphate, however, two sets--each containing four Mn2+ binding sites--were observed per enzyme tetramer with loss of the negatively cooperative interaction. These results are viewed in terms of four noncatalytic and four catalytic Mn2+ binding sites. Parallel kinetic investigations were conducted on the neutral enzyme to determine specific activity as a function of Mn2+ and fructose 1,6-bisphosphate concentration. A pro-equilibrium sequential pathway model involving Mn2+-enzyme and the Mn2+-fructose 1,6-bisphosphate complex both as substrate and as an allosteric inhibitor satisfactorily fit the kinetic observations. All possible enzyme species were computed from the determined binding constants and grouped according to the number of moles of Mn2+-fructose 1,6-bisphosphate complex bound to the Mn2+-enzyme, and individual rate constants were calculated. The testing of other models and their failure to describe the kinetic observations are discussed.  相似文献   

17.
We tried to establish compatible carbon content models of individual trees for a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation from Fujian province in southeast China. In general, compatibility requires that the sum of components equal the whole tree, meaning that the sum of percentages calculated from component equations should equal 100%. Thus, we used multiple approaches to simulate carbon content in boles, branches, foliage leaves, roots and the whole individual trees. The approaches included (i) single optimal fitting (SOF), (ii) nonlinear adjustment in proportion (NAP) and (iii) nonlinear seemingly unrelated regression (NSUR). These approaches were used in combination with variables relating diameter at breast height (D) and tree height (H), such as D, D2H, DH and D&H (where D&H means two separate variables in bivariate model). Power, exponential and polynomial functions were tested as well as a new general function model was proposed by this study. Weighted least squares regression models were employed to eliminate heteroscedasticity. Model performances were evaluated by using mean residuals, residual variance, mean square error and the determination coefficient. The results indicated that models with two dimensional variables (DH, D2H and D&H) were always superior to those with a single variable (D). The D&H variable combination was found to be the most useful predictor. Of all the approaches, SOF could establish a single optimal model separately, but there were deviations in estimating results due to existing incompatibilities, while NAP and NSUR could ensure predictions compatibility. Simultaneously, we found that the new general model had better accuracy than others. In conclusion, we recommend that the new general model be used to estimate carbon content for Chinese fir and considered for other vegetation types as well.  相似文献   

18.
This paper studies the effectiveness of a class of linear statistical estimators called autoregressive and autoregressive-moving averages equations for mimicking and predicting the abundance fluctuations of three species of Drosophila censused at a pine plantation near Bogota, Colombia. A short introductory justification for the use of linear estimators is given followed by a brief discussion of the theoretical basis of statistical prediction. The assumptions of the method, fitting techniques, and use of the equations in forecasting are discussed. The mimicking ability of the equations is tested by comparing monte carlo simulations employing the fitted models to the observed fluctuations of the three species. Of the autoregressive equations fitted to each species two are judged successful and one less than successful. Autoregressive-moving averages models were found to be significantly worse predictors than the simpler autoregressive equations for these three species. The parameter estimates given by the preliminary estimation techniques are compared with the statistically efficient least squares estimates. The estimates compare well for most of the autoregressive models, but the parameter estimates for the autoregressive-moving averages models were misleading.  相似文献   

19.
In this paper a nonlinear model depending of one modifying factor to study the dependence of the PAPOVA virus reduction factor to the irradiant dose. In this model, least squares estimates of the parameters are obtained using the linearization method with the initial guesses values. An extension of the initial exponential model is proposed when the viral material is influenced by some modifying factors.  相似文献   

20.
A program was written to perform a linear least squares curve fitting on data. It includes facilities to report the usual statistics and digital plotter output. Seven types of curves are available for fitting the data. Other features of LILLY include provision of facilities for the selection of subsets in different symbols and separate curve fitting for these subsets. The program also provides a confidence region about the fitted line and the prediction interval for data points. Examples of the use of the program are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号