首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although past studies observed the changes of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in end‐stage heart failure (HF) patients, a consistent and clear pattern of type‐specific MMPs and/or TIMPs has yet to be further defined. In this study, proteomic approach of human protein antibody arrays was used to compare MMP and TIMP expression levels of left ventricular (LV) myocardial samples from end‐stage HF patients due to dilated cardiomyopathy (DCM) with those from age‐ and sex‐ matched non‐failing patients. Western blot analysis, immunohistochemistry and ELISA were used for validation of our results. We observed that MMP‐10 and ‐7 abundance increased, accompanied by decreased TIMP‐4 in DCM failing hearts (n= 8) compared with non‐failing hearts (n= 8). The results were further validated in a cohort of 34 end‐stage HF patients derived from three forms of cardiomyopathies. Cardiac and plasma MMP‐10 levels were positively correlated with the LV end‐diastolic dimension in this HF cohort. In addition, we observed that insulin‐like growth factor‐2 promoted MMP‐10 production in neonatal rat cardiomyocytes. In conclusion, this study demonstrated a selective up‐regulation of MMP‐10 and ‐7 along with a discordant change of TIMP‐4, and a positive correlation between MMP‐10 levels and the degree of LV dilation in end‐stage HF patients. Our findings suggest that type‐specific dysregulation of MMPs and TIMPs is associated with LV remodelling in end‐stage HF patients, and MMP‐10 may act as a novel biomarker for LV remodelling.  相似文献   

2.
Hepatic fibrosis involves the interplay of many factors including reactive oxygen species. Recent reports described antioxidant properties of glycosaminoglycans (GAGs). Since several findings have shown that hyaluronic acid (HYA) and chondroitin-4-sulphate (C4S) may act as antioxidant molecules, the aim of this research was to evaluate the antioxidant effects of HYA and C4S treatment in a rat model of liver fibrosis. The effect on tissue inhibitors of metalloproteinases (TIMPs) was also studied. Liver fibrosis was induced in rats by eight intraperitoneal injections of CCl4, twice a week for 6 weeks. HYA or C4S alone (25 mg/kg) or HYA and C4S in combination (12.5 + 12.5 mg/kg) were administered daily by the same route during the 6 weeks. At the end of the 6-week treatment period (24 h after the last dose of GAGs), the following parameters were evaluated: (1) serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as index of hepatic cell disruption; (2) hepatic conjugated dienes (CD), as index of lipid peroxidation; (3) hepatic TIMPs activity and expression; (4) hepatic superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as index of endogenous defences; (5) hepatic hydroxyproline, as index of collagen deposition. CCl4-induced liver fibrosis enhanced lipid peroxidation and TIMPs activation, increased ALT and AST, depleted antioxidants SOD and GPx, and caused collagen deposition in liver tissue. Treatment with GAGs, especially when in combination, successfully reduced ALT and AST rise, lipid peroxidation by evaluating conjugated dienes, TIMPs activation and mRNA expression, partially restored SOD and GPx activities, and limited collagen deposition in the hepatic tissue. The data obtained showed that these molecules were able to limit hepatic injury induced by chronic CCl4 intoxication and especially limited liver fibrosis. They also confirm that HYA and C4S may exert antioxidant mechanism, while reduction of TIMPs expression suggests that GAGs may influence MMPs and TIMPs imbalance in liver fibrosis.  相似文献   

3.

Background

Infection with Wuchereria bancrofti can cause severe disease characterized by subcutaneous fibrosis and extracellular matrix remodeling. Matrix metalloproteinases (MMPs) are a family of enzymes governing extracellular remodeling by regulating cellular homeostasis, inflammation, and tissue reorganization, while tissue-inhibitors of metalloproteinases (TIMPs) are endogenous regulators of MMPs. Homeostatic as well as inflammation-induced balance between MMPs and TIMPs is considered critical in mediating tissue pathology.

Methods

To elucidate the role of MMPs and TIMPs in filarial pathology, we compared the plasma levels of a panel of MMPs, TIMPs, other pro-fibrotic factors, and cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection to those with clinically asymptomatic infections (INF) and in those without infection (endemic normal [EN]). Markers of pathogenesis were delineated based on comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN).

Results and Conclusion

Our data reveal that an increase in circulating levels of MMPs and TIMPs is characteristic of the filarial disease process per se and not of active infection; however, filarial disease with active infection is specifically associated with increased ratios of MMP1/TIMP4 and MMP8/TIMP4 as well as with pro-fibrotic cytokines (IL-5, IL-13 and TGF-β). Our data therefore suggest that while filarial lymphatic disease is characterized by a non-specific increase in plasma MMPs and TIMPs, the balance between MMPs and TIMPs is an important factor in regulating tissue pathology during active infection.  相似文献   

4.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and −14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular cartilage chondrocytes also showed an increased production of both MMPs and TIMPs.  相似文献   

5.
6.
7.
Bone matrix turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), and plasminogen activator inhibitor type-1 (PAI-1). We previously demonstrated that 1.0g/cm(2) of compressive force was an optimal condition for inducing bone formation by osteoblastic Saos-2 cells. Here, we examined the effect of mechanical stress on the expression of MMPs, TIMPs, tPA, uPA, and PAI-1 in Saos-2 cells. The cells were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum and with or without continuously compressive force (0.5-3.0g/cm(2)) for up to 24h. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 gene expression were estimated by determining the mRNA levels using real-time PCR, and the protein levels were determined using ELISA. The expression levels of MMP-1, MMP-2, MMP-14, and TIMP-1 markedly exceeded the control levels at 1.0g/cm(2) of compressive force, whereas the expression levels of MMP-3, MMP-13, TIMP-2, TIMP-3, TIMP-4, tPA, uPA, and PAI-1 markedly exceeded the control levels at 3.0g/cm(2). These results suggest that mechanical stress stimulates bone matrix turnover by increasing these proteinases and inhibitors, and that the mechanism for the proteolytic degradation of bone matrix proteins differs with the strength of the mechanical stress.  相似文献   

8.
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulate proteolysis of the extracellular matrix and other extracellular proteins, including growth factors and their receptors. The aberrant expression of these genes is common in most cancers. We profiled the RNA levels of every human MMP and TIMP in a variety of cell types (fibroblast, endothelial, hematopoietic, carcinoma, melanoma, and glioma) using quantitative PCR, with the aim of identifying novel expression patterns. Almost all members of the membrane-type (MT-) MMP and TIMP families were elevated in glioma lines compared to carcinomas. In clinical glioma specimens, there were positive correlations between glioma grade and RNA levels of MT-1, MT-2, and MT-6 MMP, TIMP-1 and TIMP-2, and for several growth factors and receptors. These findings suggest that advanced malignant gliomas have elevated levels of membrane-associated MMPs and TIMPs, which may potentially regulate vascularization and invasion. Concurrent elevation of signaling molecules suggests potential bidirectional relationships that enhance tumor aggressiveness.  相似文献   

9.
The matrix metalloproteinases (MMPs) constitute a family of secreted/cell-surface-anchored multidomain zinc endopeptidases, all of which exhibit a catalytic domain of a common metzincin-like topology, and which are involved in degradation of the extracellular matrix but also in a number of other biologic processes. Normally, the proteolytic activity of the MMPs is precisely regulated by their main endogenous protein inhibitors, in particular the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumor growth, and tumor metastasis, rendering the MMPs attractive targets for inhibition therapy. Knowledge of their tertiary structures is crucial for a full understanding of their functional properties and their associations with dysfunctions. Since the reports of the first atomic structures of MMPs and TIMPs in 1994, considerable structural information has become available about both of these families of substances. Many of the MMP structures have been determined as complexes with synthetic inhibitors, facilitating knowledge-based drug design. This review focuses on the currently available 3D structural information about MMPs and TIMPs.  相似文献   

10.
Matrix metalloproteinases (MMPs) play a central role in many biological processes such as development, morphogenesis and wound healing, but their unbalanced activities are implicated in numerous disease processes such as arthritis, cancer metastasis, atherosclerosis, nephritis and fibrosis. One of the key mechanisms to control MMP activities is inhibition by endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs). This review highlights the structures and inhibition mechanism of TIMPs, the biological activities of TIMPs, the unique properties of TIMP-3, and the altered specificity towards MMPs achieved by mutagenesis. A potential therapeutic use of TIMP variants is discussed.  相似文献   

11.

Background

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of a metabolic syndrome. To date, liver biopsy has been the gold standard used to differentiate between simple steatosis and steatohepatitis/fibrosis. Our aim was to compare the relevance of serum non-invasive parameters and scoring systems in the staging of liver fibrosis and non-alcoholic steatohepatitis (NASH) in patients with NAFLD.

Methods and Findings

A total of 112 consecutive patients diagnosed with NAFLD were included. A liver biopsy was performed on 56 patients. The Kleiner score was used for the staging and grading of the histology. Non-invasive parameters for fibrosis (hyaluronic acid; AST/ALT; fibrosis scoring indexes OELF, ELF, BARD score, APRI, NAFLD fibrosis score); and inflammation (M30 and M65 cytokeratin-18 fragments) were measured and calculated. The same analyses were performed in 56 patients diagnosed with NAFLD, who were not indicated for liver biopsy. Based on the liver histology, NASH was diagnosed in 38 patients; simple steatosis in 18 patients. A cut-off value of 750 U/L of serum M65 discriminated patients with and without NASH with a 80% sensitivity and 82% specificity (95% CI:57–95). Fibrosis stage F0–F2 was present in 39 patients; F3–F4 in 17 patients. Serum concentrations of hyaluronic acid were higher in patients with advanced fibrosis (p<0.01); a cut-off value of 25 µg/l discriminated patients with F3–F4 with a 90% sensitivity and 84% specificity from those with F0–F2 (95% CI:59–99). When applying the non-invasive criteria to those patients without a liver biopsy, NASH could only be diagnosed in 16%; however, advanced fibrosis could be diagnosed in 35% of them.

Conclusions

In patients with NAFLD, non-invasive serum parameters with a high accuracy can differentiate those patients with NASH and/or advanced fibrosis from those with simple steatosis. A substantial portion of those patients not indicated for liver biopsy might have undiagnosed advanced fibrosis.  相似文献   

12.
Matrix metalloproteinases (MMPs) are implicated in atherosclerotic plaque rupture and recondition. Specific tissue inhibitors (TIMPs) control MMP functions. Both MMPs and TIMPs are potential biomarkers of plaque instability. Elevated Apo-CII and CIII and Apo-E levels are recognized as cardiovascular disease risk factors. We aimed to establish the best blood biomarker panel to evaluate the coronary artery disease (CAD) severity. Plasma levels of MMP-3 and MMP-9, TIMP-1 and TIMP-2, Apo-CII, Apo-CIII and Apo-E were measured in 472 patients with CAD evaluated by coronary angiography and electrocardiography, and in 285 healthy controls. MMP-3 and MMP-9 plasma levels in CAD patients were significantly increased (P < 0.001) compared to controls (3.54- and 3.81-fold, respectively). Furthermore, these increments are modulated by CAD severity as well as for Apo-CII and Apo-CIII levels (P < 0.001). TIMPs levels were decreased in CAD versus controls (P < 0.001) and in inverse correlation to MMPs. Standard ROC curve approach showed the importance of panels of biomarkers, including MMP-3, MMP-9, TIMP-1, TIMP-2, Apo-CII and Apo-CIII, for disease aggravation diagnosis. A high area under curve (AUC) value (0.995) was reached for the association of MMP-9, TIMP-2 and Apo-CIII. The unbalance between MMPs and TIMPs in vascular wall and dyslipidaemia creates favourable conditions for plaque disruption. Our study suggests that the combination of MMP-9, TIMP-2 and Apo-CIII values (‘CAD aggravation panel’) characterizes the severity of CAD, that is electrophysiological state, number of involved vessels, stent disposal and type of stent.  相似文献   

13.
Deer bone extract has the potential to relieve the discomfort or the articular cartilaginous damage associated with osteoarthritic (OA) and may be useful as a natural supplement for OA treatment without serious side effects. We analyzed the expression of pro-inflammatory cytokine and cartilage-related genes in monosodium iodoacetate-induced OA rats. Increases in the levels of serum pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly inhibited by the administration of deer bone extract (p?<?0.05). Decreases in the expression of collagen type II (COL2) and tissue inhibitors of metalloproteinases (TIMPs) mRNAs in the cartilage were significantly inhibited by deer bone extract treatment (p?<?0.05). The deer bone extract significantly suppressed the expression of matrix metalloproteinases (MMPs) mRNAs in the cartilage. The deer bone extract induced the up-regulation of COL2 and TIMP mRNAs and the down-regulation of MMP mRNAs by suppressing the expression of pro-inflammatory cytokine mRNAs.  相似文献   

14.
A recent study has shown that increased activity of matrix metalloproteinases‐2 and metalloproteinases‐9 (MMP‐2 and MMP‐9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP‐2 and MMP‐9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP‐1 and TIMP‐2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP‐2 and MMP‐9 and the protein abundance of TIMP‐1 and TIMP‐2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP‐2 at day 0, and increased MMP‐9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP‐2, MMP‐9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   

15.
Liver fibrosis is characterized by activation of hepatic stellate cells, which are then involved in synthesis of matrix proteins and in regulating matrix degradation. In the acute phases of liver injury and as liver fibrosis progresses, there is increased expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Among the changes described, striking features include increased expression of gelatinase A (MMP-2) and membrane type 1-MMP (MT(1)-MMP; MMP-14) as well as TIMP-1 and TIMP-2. These molecules and other family members are involved in regulating degradation of both normal and fibrotic liver matrix. This article outlines recent progress in this field and discusses the mechanisms by which MMPs and TIMPs may contribute to the progression and regression of liver fibrosis. Recently described properties of MMPs and TIMPs of relevance to the pathogenesis of liver fibrosis are outlined. The proposal that regression of liver fibrosis is mediated by decreased expression of TIMPs and involves degradation of fibrillar collagens by a combination of MT(1)-MMP and gelatinase A, in addition to interstitial collagenase, is explored.  相似文献   

16.
BackgroundThe mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear.MethodsThe protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet.FindingsWe found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet–fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database.InterpretationIn conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.  相似文献   

17.
Fujisaki K  Tanabe N  Suzuki N  Mitsui N  Oka H  Ito K  Maeno M 《Life sciences》2006,78(17):1975-1982
Interleukin-1 (IL-1) plays key roles in altering bone matrix turnover. This turnover is regulated by matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), and the plasminogen activation system, including tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) , and plasminogen activator inhibitor type-1 (PAI-1). In this study, we examined the effect of IL-1alpha on the expression of the MMPs, TIMPs, tPA, uPA, and PAI-1 genes in osteoblasts derived from the rat osteosarcoma cell line ROS 17/2.8. The cells were cultured in alpha-minimum essential medium containing 10% fetal bovine serum with 0 or 100 U/ml of IL-1alpha for up to 14 days. The levels of MMPs, TIMPs, uPA, tPA, and PAI-1 expression were estimated by determining the mRNA levels using real-time RT-PCR and by determining protein levels using ELISA. In IL-1alpha cultures, the expression levels of MMP-1, -2, -3, -13, and -14 exceeded that of the control through day 14 of culture, and the expression of MMPs increased markedly from the proliferative to the later stages of culture. The TIMP-1, -2, and -3 expression levels increased from the initial to the proliferative stages of culture. The expression of tPA increased greatly during the proliferative stage of culture, and uPA expression increased throughout the culture period, increasing markedly from the proliferative to the later stages of culture. In contrast, PAI-1 expression decreased in the presence of IL-1alpha through day 14. These results suggest that IL-1alpha stimulate bone matrix turnover by increasing MMPs, tPA, and uPA production and decreasing PAI-1 production by osteoblasts, and incline the turnover to the resolution.  相似文献   

18.
Matrix metalloproteinases (MMPs) play a major role in tissue remodelling and repair in pathophysiological conditions, such as liver fibrosis and regeneration. Regulation of the MMPs produced by liver cells is important in maintaining cell-matrix ratio in liver, which is a major target site for hormones that mediate their intracellular effects through cAMP. The possibility of cAMP affecting the activity of MMPs and their endogenous inhibitors, tissue inhibitor of MMPs (TIMPs) was studied using isolated rat hepatocytes in culture. Zymographic analysis showed that treatment with hormones like epinephrine, thyroxine and dexamethasone and Bt2 cAMP increased 92 kDa MMP-9 activity. Bt2 cAMP caused upregulation of MMP-9 in a dose-dependent manner. The effect of hormones was less on MMP-2. ELISA using specific antibodies showed increase in levels of MMP-9 and TIMP-1 protein. Kinetic analysis of production of MMPs and TIMPs showed that the response to Bt2 cAMP was a delayed one, indicating its effect on de novo protein synthesis. These results suggest the possibility of cAMP dependent regulation of MMP-9 in the hepatocytes.  相似文献   

19.
The matrix metalloproteinases (MMPs) are enzymes involved in the turnover of the extracellular matrix. Their overexpression in tumors is implicated in the metastatic process and may provide a target for diagnostic tumor imaging by using a radiolabeled inhibitor. MMPs are inhibited by endogenous tissue inhibitors of metalloproteinases (TIMPs). Thus, TIMPs are potential targeting molecules which could be used as vehicles for selective radionuclide delivery by virtue of their binding to MMPs. The aim of this work was to produce a radiopharmaceutical with which to evaluate this potential. The 127 amino acid N-terminal domain of recombinant human TIMP-2 (N-TIMP-2) was conjugated with the bifunctional chelator diethylenetriamine pentaacetic acid (DTPA). Singly modified DTPA-N-TIMP-2 conjugate (identified by electrospray ionization mass spectrometry) was isolated by anion-exchange chromatography. The primary site of DTPA modification on N-TIMP-2 was mapped to lysine-116, which is distant from the site of MMP interaction. The conjugate was radiolabeled with indium-111 to give 111In-DTPA-N-TIMP-2 with a specific activity of at least 4 MBq/microg and a radiochemical yield and purity of >95%, by incubation with 111InCl3, without need for postlabeling purification. The product was sterile, pyrogen-free, and stable in serum over 48 h and retained full inhibitory activity in a fluorimetric binding assay. With these attributes, 111In-DTPA-N-TIMP-2 is a suitable radiopharmaceutical for in vivo biological and clinical investigation of the potential benefits of imaging MMP expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号