首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]verapamil binding to muscle tubule membrane has the following properties. KD = 27 ± 5 nM and maximum binding capacity Bmax = 50 ± 5 pmol/mg of protein. A 1 = 1 stoichiometry of binding was found for the ratio of [3H]verapamil versus [3H] nitrendipine binding sites. The dissociation constant found at equilibrium is near that determined from the ratio of the rate constants for association (k1) and dissociation (k?1). Antiarrhythmic drugs like D600, diltiazem and bepridil are competitive inhibitors of [3H]verapamil binding with KD values between 40 and 200 nM. Dihydropyridine analogs are apparent non competitive inhibitors of [3H]verapamil binding with half-maximum inhibition values (K0.5) between 1 and 5 nM.  相似文献   

2.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

3.
In vitro incubations of cytosol proteins from human red blood cells with [125I] labelled L-3,5,3′ triiodothyronine demonstrated the existence of high affinity and limited capacity binding sites for T3. At 4°C, the rate constant of association was 3 × 107 M?1h?1, and the rate constant of dissociation was 9.10?3h?1. The dissociation constant Kd was calculated from these data or measured by Scatchard analysis and found to be between 3 and 7.10?10M. The maximum binding capacity was 1.4 f moles of L-3,5,3′ triiodothyronine per mg cytosol proteins. A close parallel between the biological pontency of the analogs of L-T3 was observed.  相似文献   

4.
Using concentrations of [3H] dihydroergokryptine between 0.1 and 5 nM, saturable binding can be demonstrated in rat cerebral cortical membranes with a dissociation constant (KD) of about 0.8 nM. α-Noradrenergic agonists and antagonists compete for the sites labeled by these low concentrations of [3H] dihydroergokryptine with relative potencies characteristics of classical α-noradrenergic receptors. The very low potency of serotonin in competing for these binding sites indicates that, in contrast to findings with higher concentrations of [3H] DHE, low concentrations do not label serotonin receptors. Moreover, the low potency of dopamine in competing for [3H] dihydroergokryptine binding in both striatal and cortical membranes indicates that no detectable portion of binding is associated with postsynaptic dopamine receptors.  相似文献   

5.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors.  相似文献   

6.
The high-affinity binding site for [3H] diazepam has been solubilized from rat brain using 0.5% Lubrol-PX. Using a polyethylene glycol (PEG)-γ-globulin assay, it has been possible to demonstrate solubilization of about 60% of the binding sites in a single step. The solubilized binding site possesses a KD of 11 nM for [3H] diazepam compared to approximately 4 nM for the membrane-bound form, and binding is to a single class of sites. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Binding of [3H] diazepam is temperature dependent and higher at 4° than 37°C. Both urea and guanidine-HC1 were capable of totally inhibiting binding, and this inhibition was partly reversible; neither sulfhydryl groups nor carbohydrate moieties seem to be important for binding. γ-Aminobutyric acid which enhanced [3H] diazepam binding to membrane fractions was without effect on the solubilized binding site.  相似文献   

7.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

8.
The binding of the chemoattractant N-formyl-methionylleucyl-[3H]phenylalanine to intact polymorphonuclear leukocytes and membrane preparations was analyzed by computer methods. Whole viable cells bind the chemoattractant with a single dissociation constant (KD) of 22.3 ± 2.4 nM and contain an average of 55,000 receptors percell. In contrast, the binding data using membrane preparations were consistent with the presence of two classes of binding sites with average KDs of 0.53 ± 0.01 nM and 24.4 ± 1.2 nM. The high affinity receptors accounted for ca. 25% of the binding sites. Increasing the receptor occupancy did not affect the rate of dissociation of the ligand-receptor complex thus negative cooperativity is not a likely explanation for the complex binding isotherms. On the other hand, the dissociation kinetics did agree with the two affinity receptor model.  相似文献   

9.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

10.
A clonal cell line has been established from the interscapular brown adipose tissue (BAT) of the C57 BL/6J +/+ mouse. The line, designated BFC-1, is aneuploid and exhibits both morphological and biochemical properties characteristics of mature adipocytes. Adipose conversion begins after confluence and is accompanied by an early emergence of lipoprotein lipase; a later emergence of glycerol-3-phosphate dehydrogenase and acid: CoA ligase; an increase in the average triglyceride content. Adipose conversion, estimated by activities of enzyme markers, is enhanced at any given time by the continuous presence in the culture medium of insulin and triiodothyronine, both within their physiological range of concentrations. In addition to both hormones, chronic exposure of confluent cells to beta-adrenergics brings similar long-term effects on adipose conversion. The uptake of labelled 2-deoxyglucose by differentiated BFC-1 cells is stimulated by insulin; the half-maximum effect is observed at 1 nM insulin. Differentiated BFC-1 cells, in which endogenous triglycerides have been prelabelled on the fatty acid moiety, do respond to beta-adrenergics by releasing radioactive fatty acids. The agonist potency order and the EC50 value for each agonist are BRL 37344 (0.5 nM) greater than isoproterenol (1.5 nM) greater than norepinephrine (3 nM) greater than epinephrine (7 nM) greater than salbutamol (15 nM). The half-maximally and maximally effective concentrations of corticotropin to stimulate lipolysis are found to be 4 and 100 nM, respectively. The lipolytic response to isoproterenol is counteracted by prior addition of insulin or simultaneous addition of propranolol. Parallel studies performed on Ob17 cells, a clonal line established from mouse white adipose tissue (Négrel et al., Proc natl acad sci US 75 (1978) 6054), show that the agonist potency order and the EC50 value for each agonist are BRL 37344 (3 nM) greater than isoproterenol (10 nM) greater than norepinephrine (20 nM) greater than epinephrine (40 nM). Thus both BFC-1 cells and Ob17 cells show an atypical beta-adrenoreceptor similar to that described in rat adipocytes (Arch et al., Nature 309 (1984) 163), but the sensitivity of BFC-1 cells toward beta-agonists is found to be 6-fold higher than that of Ob17 cells. Thus the BFC-1 line represents a useful model for the study of short- and long-term responses to beta-adrenergics.  相似文献   

11.
High affinity binding sites for the calcium channel inhibitor [3H]nitrendipine have been identified in microsomes from pig coronary arteries (KD=1.6 nM; Bmax=35 fmol/mg) and in purified sarcolemma from dog heart (KD=0.11 nM; Bmax=230 fmol/mg). [3H]nitrendipine binding to coronary artery microsomes was completely inhibited by nifedipine, partially by verapamil and D600 and, surprisingly, was stimulated by d-cis-diltiazem but not by 1-cis-diltiazem, a less active isomer. Half-maximal relaxation of KCl-depolarized coronary rings occurred in a slow process at 1 nM nitrendipine or 100 nM d-cis-diltiazem. In dog trabecular strips, nitrendipine caused a negative inotropic response (ED50=1μM). These results suggest that there may be multiple binding sites for different “subclasses” of calcium channel inhibitors, and that drug binding sites may be different molecular entities from the putative calcium channels.  相似文献   

12.
T E Cote  J W Kebabian 《Life sciences》1978,23(16):1703-1713
The properties of specific 3H-dihydroalprenolol binding sites resemble the properties of the beta-receptor regulating hormone-sensitive adenylyl cyclase activity in an homogenate of rabbit cerebellum. The rabbit cerebellum has 5 to 6 pmole per gm (wet weight) of high affinity (KD=1.3 nM) specific binding sites for 3H-dihydroalprenolol. the interaction of several beta-adrenergic agonists and antagonists with the specific binding sites is rapid, reversible, and demonstrates stereospecificity which parallels the properties of the beta receptor. Beta-adrenergic agonists show a similar potency as agonists upon adenylyl cyclase activity and as inhibitors of 3H-dihydroalprenolol binding: i.e. l-isoproterenol > l-epinephrine > l-norepinephrine (suggesting a beta2 adrenergic receptor). The binding affinities of several beta-adrenergic agonists and antagonists for the specific binding sites approximate the affinities of these compounds for the stimulation of adenylyl cyclase. Thus, the 3H-dihydroalprenolol binding sites have properties similar to the beta-adrenergic receptor regulating adenylyl cyclase activity in a rabbit cerebellar homogenate.  相似文献   

13.
G. Falkay  L. Kovacs 《Life sciences》1983,32(14):1583-1590
The binding characteristics of beta-adrenergic ligand [3H]-dihydroalprenolol (DHA) were determined in particulate membranes of early human placenta (8 – 12 weeks of gestation). [3H]-DHA binding to crude membrane fractions was rapid, reversible, saturable and linearly correlated with the membrane protein concentration. Scatchard analysis of saturation experiments showed a KD of 2.80 ± 0.9 nM and a density of binding sites of 330.30 ± 93.5 fmol/mg protein. Agonist potency isoproterenol epinephrine norepinephrine indicated that early human placenta contains an adrenergic receptor of beta-2 subtype.  相似文献   

14.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

15.
Triiodothyronine (T3) effects on the activity, rate of synthesis and mRNA content of the key lipogenic enzyme, fatty acid synthetase, were studied in differentiating ob17 preadipocytes cloned from ob/ob mouse epididymal adipose tissue. During differentiation in the presence of insulin, a 6–10-fold increase in both fatty acid synthetase specific activity and synthesis rate were reproducibly observed and occurred concomitantly. The relative synthesis rate exhibited a progressive elevation from 0.5% at confluence to a maximum level of 2% in the presence of insulin. The rate of the enzyme degradation determined by pulse-chase experiments was similar in differentiating cells and insulin-untreated cells of the same age (t12, 40–42 h). Furthermore, the increase in the enzyme synthesis rate was preceded by a progressively elevating amount of mRNA encoding for this protein as detected by translation in a reticulocyte lysate cell-free system. It is thus suggested that the increment in total and neosynthesized fatty acid synthetase in essentially due to an increased enzyme synthesis, reflecting an increased relative content of its specific mRNA. T3 included at a physiological concentration (1.5 nM) in the culture medium enhanced significantly both enzyme synthesis and its specific mRNA. The most important T3 effect was an acceleration of both processes, a stimulation of the mRNA level being detected as early as day 3 post-confluence and maximum at day 5 when the effect on the synthetase synthesis rate and activity began to be enhanced. This suggests that T3 would mainly affect fatty acid synthetase as a pretranslational level.  相似文献   

16.
G. Le Fur  T. Phan  A. Uzan 《Life sciences》1980,26(14):1139-1148
Direct binding to intact rat lymphocytes has been shown for the potent dopaminergic antagonist [3H]spiroperidol. The specific binding is saturable with two components (KD1 = 1.9 nM, KD2 = 36.2 nM). Determination of the KD by kinetic studies measuring rate constants for association and dissociation provided KD values similar to those obtained in equilibrium experiments. The specific binding is proportional to cell concentration and temperature dependent with a maximum at 37°C. [3H]spiroperidol binding is stereospecific since (+)butaclamol was more effective than (?)butaclamol. The relative potencies of different antidopaminergic agents in competing for [3H]spiroperidol binding sites parallel their activity in the striatum. Dopaminergic receptors have also been demonstrated in other mammalian lymphocytes (rabbit, dog, human). Lymphocyte dopaminergic receptors could be implicated in lymphocytes mediated immune response.  相似文献   

17.
Abstract: The binding of [3H]dopamine to brain regions of calf, rat, and human was investigated. The calf caudate contained the highest density of [3H]dopamine binding sites, with a Bmax value of 185 fmol/mg protein, whereas rat and human striatum contained one-third this number of sites. The KD values for [3H]dopamine in all tissues were 2–3 nM. Dopaminergic catecholamines (dopamine, apomorphine, 6,7-dihydroxy-2-aminotetralin, and N-propylnorapomorphine) inhibited the binding of [3H]dopamine in all three species, at low concentrations, with IC50 values of 1.5 to 6 nM. Neuroleptics, in contrast, inhibited the binding at high concentrations (with IC50 values of 200 to 40,000 nM). The [3H]dopamine binding sites were saturable, heat-labile, and detectable only in dopamine-rich brain regions; these sites differed from D2 dopamine sites (labeled by [3H]butyrophenone neuroleptics), and from Dl dopamine sites (labeled by [3H]thioxanthene neuroleptics) associated with the dopamine-stimulated adenylate cyclase. We have, therefore, called these high-affinity [3H]dopamine binding sites D3 sites. [3H]Apomorphine and [3H]ADTN also appeared to label D3 sites. These ligands however, were less selective than [3H]dopamine, and labeled sites other than D3 as well. Assay conditions were important in determining the parameters of [3H]dopamine binding. The optimum conditions for selective labeling of the D3 dopaminergic sites, using [3H]dopamine, required the presence of EDTA and ascorbate.  相似文献   

18.
Synaptosomal fractions were isolated from frog retina: a fraction enriched in photoreceptor terminals (P1) and a second one (P2) containing interneurons terminals. We compared the binding of [3H]glycine and [3H]strychine to membranes of these synaptosomes. The binding of both radioactive ligands was saturable and Na+-independent. [3H]Glycine bound to a single site in P1 and P2 synaptosomal fractions, with KD=12 and 82 nM and BMax=3.1 and 3.06 pmol/mg protein respectively. [3H]Strychnine bound to two sites in each one of the synaptosomal fractions. For P1 KD values were 3.9 and 18.7 nM, and BMax values were 1.1 and 7.1 pmol/mg protein, respecitively. Membranes from the P2 synaptosomal fraction showed KD's of 0.6 and 48 nM and BMax's of 0.4 and 4.5 pmol/mg. Specific [3H]glycine binding was displaced by -alanine, l-serine, d-serine and HA966, but not by strychnine 7-chlorokynurenic or 5,7-dichloro-kynurenic acids. Specific [3H]strychnine, binding was partially displaced by glycine and related aminoacids and totally displaced only by 2-NH2-strychnine. Our results indicate the presence of high affinity binding sites for glycine and strychnine in frog retinal synaptosomal membranes. The pharmacological binding pattern indicates the presence of the strychnine sensitive glycine receptor as well as other sites. These might not include the NMDA receptor-associated glycine site.  相似文献   

19.
Abstract: Membranes from adult chicken brain have high-affinity binding sites for N6-cyclohexyl[3H]adenosine (CHA) (KD= 4 nM, Bmax = 0.6 pmol/mg protein). This CHA binding could be attributed to adenosine receptors of the A1 type, since substituted adenosine analogs, e.g. N6-(l -2-phenylisopropyl)adeno sine (IC50 = 60 nM), were very potent displacers. Binding sites for 1,3-diethyl- 8-[3H]phenylxanthine (DPX) in adult brain membranes have a moderate affinity (KD= 50 nM, Bmax = 1.5 pmol/mg). The association of DPX with these sites could be completely displaced by 8-phenyltheophylline (IC50= 300 nM) and other xanthines, but only 45% of specific DPX binding could be displaced by phenylisopropyladenosine. This suggests that about half of DPX sites are putative A1 receptors and the other half are of the A2 type. Primary cultures of pure glial and neuronal cells from chick embryo brain were also examined for adenosine receptors. Specific binding of CHA could not be detected in these preparations, but both glial and neuronal membranes have specific sites for DPX. At a [3H]DPX concentration of 20 nM, specific binding was 50% higher (per mg protein) in glial than in neuronal membranes. The maximum binding of DPX to glial membranes (Bmax= 1.6 pmol/mg) was comparable to values for adult brain, but the glial affinity (KD= 90 nM) was somewhat less. Phenylisopropyladenosine was able to displace less than 20% of the total glial sites for DPX. This finding was in accord with the lack of CHA sites and demonstrates that A1 receptors make little contribution to DPX binding in glial membranes. In decreasing order of potency, 8-phenyltheophylline, CHA, theophylline, caffeine, and 3-isobutyl-I-methylxanthine completely displace DPX association with glia. DPX binding to glial membranes thus appears due to a single class of receptors, which may prove to be of the A2 type.  相似文献   

20.
Two sets of high-affinity thyroxine binding sites (KD 0.39 ± 0.06 nM and 23 ± 5 nM) were detected on purified rat liver plasma membranes. Thyroxine is bound with high stereospecificity regarding iodine substituents and alanine side chain modifications of the molecule. Thyroxine binding is inhibited by -SH blocking agents and proteases. The highest affinity thyroxine binding site is also affected by phospholipase A and is distinct from triiodothyronine binding sites present in the membrane preparations; arguments are given for its plasmalemma origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号