首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the onset of advanced age, cardiac‐associated pathologies have increased in prevalence. The hallmarks of cardiac aging include cardiomyocyte senescence, fibroblast proliferation, inflammation, and hypertrophy. The imbalance between levels of reactive oxygen species (ROS) and antioxidant enzymes is greatly enhanced in aging cells, promoting cardiac remodeling. In this work, we studied the long‐term impact of phenolic compounds (PC) on age‐associated cardiac remodeling. Three‐month‐old Wistar rats were treated for 14 months till middle‐age with either 2.5, 5, 10, or 20 mg kg?1 day?1 of PC. PC treatment showed a dose‐dependent preservation of cardiac ejection fraction and fractional shortening as well as decreased hypertrophy reflected by left ventricular chamber diameter and posterior wall thickness as compared to untreated middle‐aged control animals. Analyses of proteins from cardiac tissue showed that PC attenuated several hypertrophic pathways including calcineurin/nuclear factor of activated T cells (NFATc3), calcium/calmodulin‐dependent kinase II (CAMKII), extracellular regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3ß (GSK 3ß). PC‐treated groups exhibited reduced plasma inflammatory and fibrotic markers and revealed as well ameliorated extracellular matrix remodeling and interstitial inflammation by a downregulated p38 pathway. Myocardia from PC‐treated middle‐aged rats presented less fibrosis with suppression of profibrotic transforming growth factor‐ß1 (TGF‐ß1) Smad pathway. Additionally, reduction of apoptosis and oxidative damage in the PC‐treated groups was reflected by elevated antioxidant enzymes and reduced RNA/DNA damage markers. Our findings pinpoint that a daily consumption of phenolic compounds could preserve the heart from the detrimental effects of aging storm.  相似文献   

2.
Calcified aortic stenosis is one of the most common causes of heart failure in the elderly. Current guidelines recommend aortic valve replacement in patients with severe disease and evidence of decompensation based on either symptoms or impaired systolic ejection fraction. However, symptoms are often subjective whilst impaired ejection fraction is not a sensitive marker of ventricular decompensation. Interest has surrounded the use of cardiac biochemical markers as objective measures of left ventricular decompensation in aortic stenosis. We will first examine mechanisms of release of biochemical markers associated with myocardial wall stress (BNP/NT-proBNP), myocardial fibrosis (markers of collagen metabolism, galectin-3, soluble ST2) and myocyte death/myocardial ischemia (high-sensitivity cardiac troponins, heart-type fatty acid binding protein, myosin-binding protein C); and discuss future directions of these markers.  相似文献   

3.
4.
Vasopeptidase inhibitors possess dual inhibitory actions on neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) and have beneficial effects on cardiac remodeling. However, the contribution of NEP inhibition to their effects is not yet fully understood. To address the role of cardiac NEP inhibition in the anti-remodeling effects of a vasopeptidase inhibitor, we examined the effects of omapatrilat on the development of cardiac remodeling in rats with left coronary artery ligation (CAL) and those on collagen synthesis in cultured fibroblast cells. In vivo treatment with omapatrilat (30 mg/kg/day for 5 weeks) inhibited cardiac NEP activity in rats with CAL, which was associated with a suppression of both cardiac hypertrophy and collagen deposition. In cultured cardiac fibroblasts, omapatrilat (10–7~10–5 M) inhibited NEP activity and augmented the ANP-induced decrease in [3H]-proline incorporation. ONO-BB, an active metabolite of the NEP selective inhibitor ONO-9902, also augmented the ANP-induced response, whereas captopril, an ACE inhibitor, did not. The angiotensin I-induced increase in [3H]-proline incorporation was prevented by omapatrilat and captopril, but not by ONO-BB. The results suggest that vasopeptidase inhibitor suppressed cardiac remodeling in the setting of chronic heart failure, possibly acting through the direct inhibition of cardiac NEP. Vasopeptidase inhibitors may have therapeutic advantages over the classical ACE and NEP inhibitors alone with respect to the regression of cardiac fibrosis.  相似文献   

5.
大鼠心肌重塑过程中Axin蛋白质的表达变化   总被引:5,自引:0,他引:5  
Li P  Li JL  Yin F  Yan J  Feng XH  Li ZP  Han QD  Zhang YY 《生理学报》2003,55(3):331-335
为观察大鼠心肌重塑过程中Axin蛋白质表达水平的变化,实验用颈静脉输注去甲肾上腺素(NE)和动静脉造瘘(AVF)方法复制大鼠心肌重塑病理模型,采用超声心动术检测心脏结构和收缩功能。取病理模型大鼠左心室以及分离培养的成年大鼠心肌成纤维细胞,采用Wester blot技术检测Axin蛋白质的表达水平。结果观察到,在颈静脉输注NE 3d后,大鼠心脏发生向心性心肌肥厚和心肌纤维化,其左心室的Axin蛋白表达水平较对照组显著升高。A-V造瘘术一周后引起大鼠离心性心肌肥厚,心肌无明显纤维化,心肌Axin表达量与对照相比无显著变化。在分离培养的成年大鼠心肌成纤维细胞,NE处理24h能明显升高Axin蛋白的表达水平。上述结果表明,大鼠心脏有Axin蛋白质表达,NE致大鼠心肌重塑过程中Axin蛋白表达显著增加,可能与该过程的心肌纤维化有关。  相似文献   

6.
Li ZB  Gao YQ  Tang ZS 《生理学报》1998,50(5):551-556
我们前期研究表明运动性和高血压性心肌肥大细胞表型变化在结构、功能和代谢方面均表现不同,但两者基因表达的不同特征尚不清楚。本实验采用Northern分子杂交方法对游泳运动12周大鼠和自发性高血压大鼠(SHR)肥大心脏心肌初级和次级应答基因表达进行比较研究。结果表明,游泳大鼠心系数比对照大鼠提高26%(P〈0.01),心肌c-fos和心房钠尿肽(ANF)基因表达在最后一次运动后即刻明显增强,在运动后2  相似文献   

7.
8.
9.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p〈0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。  相似文献   

10.
《Biomarkers》2013,18(4):372-377
Acute myocardial infarction (AMI) is characterized by complex neuroendocrine activation. To investigate catestatin profiles, serial catestatin levels were determined by enzyme-linked immunosorbent assay in the first week after AMI in 50 patients. Catestatin levels reduced at admission and negatively correlated with heart rates; it increased significantly on the third day but remained decreased at 1 week and positively with blood pressure. In a subgroup of 20 patients admitted within 4?h after onset, circulating catestatin correlated inversely with norepinephrine. Catestatin might be involved in the course of AMI and act as a tool in monitoring the progression of AMI.  相似文献   

11.
目的:通过观察N-乙酰半胱氨酸(NAC)对大鼠心脏成纤维细胞(CFs)增殖和胶原合成的影响,探讨NAC对心脏重构的作用。方法:以培养的新生SD大鼠CFs为实验对象,给予不同浓度的NAC进行干预,48小时后用MTT比色法检测CFs增殖水平,用3H脯氨酸掺入法测定总胶原合成。结果:与对照组相比,不同浓度NAC作用下的CFs增殖水平和3H脯氨酸掺入量均比对照组低,且具有浓度依赖性(p<0.05)。结论:NAC能够抑制SD大鼠CFs增殖,并降低其胶原合成,因此NAC对心脏的病理性重构可能具有保护作用。  相似文献   

12.
Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload‐induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age‐dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura‐2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24‐month‐old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross‐sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6‐month‐old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged‐cathepsin K knockout mice compared to their wild‐type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age‐induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis‐inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin‐induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age‐related decline in cardiac function via suppressing caspase‐dependent and caspase‐independent apoptosis.  相似文献   

13.
目的:观察埃他卡林(IPT)对压力超负荷大鼠心室重构的影响,探讨其保护作用与血浆中前列环素(PGI2)的关系。方法:SD大鼠经腹主动脉缩窄6周后诱导压力超负荷高血压模型,随机分为5组(n=9):①假手术组;②模型组;③IPT 3mg/kg组(IPT 3);④吲哚美辛2mg/kg(Indo2)组;⑤IPT 3mg/kg+吲哚美辛2mg/kg(IPT 3+Indo2)组。RM-6000八导生理记录仪记录血流动力学改变,称量计算心脏重量指数,HE染色和iassort’s染色观察心肌组织病理学改变,比色法检测心肌组织羟脯氨酸含量,放免法检测血浆中PGI2含量。结果:腹主动脉缩窄6周后,与假手术组相比,模型组大鼠出现了明显的高血流动力学状态和心室重构,血浆中PGI2含量也明显降低。而IPT 3mg/kg实验治疗6周可明显改善上述变化。单用吲哚美辛可进一步恶化大鼠的高血流动力学状态和心室重构,合用肼可明显改善高血流动力学状态和心肌纤维化,明显抑制血浆中PGI2含量的降低。结论:IPT可明显逆转腹主动脉缩窄/压力超负荷大鼠的心室重构,其机制可能与胛作用于内皮细胞上的KATP通道,恢复内皮细胞的分泌功能增加PGI2的合成和分泌密切相关。  相似文献   

14.
Pathological cardiac hypertrophy involves excessive protein synthesis, increased cardiac myocyte size and ultimately the development of heart failure. Thus, pathological cardiac hypertrophy is a major risk factor for many cardiovascular diseases and death in humans. Extensive research in the last decade has revealed that post‐translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, O‐GlcNAcylation, methylation and acetylation, play important roles in pathological cardiac hypertrophy pathways. These PTMs potently mediate myocardial hypertrophy responses via the interaction, stability, degradation, cellular translocation and activation of receptors, adaptors and signal transduction events. These changes occur in response to pathological hypertrophy stimuli. In this review, we summarize the roles of PTMs in regulating the development of pathological cardiac hypertrophy. Furthermore, PTMs are discussed as potential targets for treating or preventing cardiac hypertrophy.  相似文献   

15.
目的:观察儿茶酚抑素(CST)在两肾一夹(2K1C)肾性高血压大鼠中的表达改变,并初步探讨其对肾性高血压的影响及作用机制。方法:36只SD大鼠随机分为假手术组(Sham)(n=15)和肾性高血压模型组(Model组)(n=21)。Model组采用两肾一夹(2K1C)手术法建立肾性高血压模型,Sham组手术操作同Model组,但不结扎左肾动脉,每周动态监测大鼠尾动脉血压。6周后各组大鼠行颈总动脉插管测定动脉压,Model组再随机分为2K1C组(n=15)与2K1C+CST组(n=6)。2K1C+CST组经颈外静脉一次性给予CST (80 μg/100 g·BW),Sham组与2K1C组给予等容积的生理盐水。各组动物经测血压、采集血标本后被处死,称取左心室加室间隔(LV+S)重量,计算(左心室+室间隔)/体重;高效液相色谱-电化学方法测定血浆中去甲肾上腺素(NE)含量,ELISA法测定血浆CST含量,硝酸还原酶法测定血浆及心室肌一氧化氮(NO)浓度;Western blot法检测延髓、肾上腺髓质、左心室和肾脏的嗜铬蛋白A (Chga)及左心室内皮型一氧化氮合酶(eNOS)、诱导型一氧化氮合酶(iNOS)蛋白表达量。结果:①与Sham组相比,2K1C组大鼠尾动脉压显著升高,左心室明显肥厚(P<0.01);血浆NE含量增高246%(P<0.01),CST水平降低56%(P<0.05);延髓Chga含量增高108%,左心室和肾脏分别降低60%和30%(P<0.05);左心室NO含量增高46%,血浆NO含量增高24%(P<0.05);左心室eNOS、iNOS蛋白表达分别增高66%和40%(P<0.05);②外源性CST显著降低2K1C大鼠颈总动脉压(P<0.05);③与2K1C组相比,2K1C+CST组左心室和血浆NO含量分别增高35%和19%(P<0.05);左心室eNOS蛋白表达高50%(P<0.05),而iNOS表达无显著统计学差异。结论:两肾肾性高血压时大鼠CST表达下调,外源性CST可能通过NO/NOS系统降低肾性高血压的作用,推测CST可能与肾性高血压的发生发展有关。  相似文献   

16.
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.  相似文献   

17.
The mechanistic target of rapamycin (mTOR) promotes pathological remodeling in the heart by activating ribosomal biogenesis and mRNA translation. Inhibition of mTOR in cardiomyocytes is protective; however, a detailed role of mTOR in translational regulation of specific mRNA networks in the diseased heart is unknown. We performed cardiomyocyte genome‐wide sequencing to define mTOR‐dependent gene expression control at the level of mRNA translation. We identify the muscle‐specific protein Cullin‐associated NEDD8‐dissociated protein 2 (Cand2) as a translationally upregulated gene, dependent on the activity of mTOR. Deletion of Cand2 protects the myocardium against pathological remodeling. Mechanistically, we show that Cand2 links mTOR signaling to pathological cell growth by increasing Grk5 protein expression. Our data suggest that cell‐type‐specific targeting of mTOR might have therapeutic value against pathological cardiac remodeling.  相似文献   

18.
The effect of long-term administration of delapril, an angiotensin converting enzyme inhibitor, and candesartan, an angiotensin II receptor blocker, on cardiac hypertrophy was investigated in spontaneously hypertensive rats (SHR). Delapril (2 mg/kg/day) and candesartan (2 mg/kg/day) were administered for 5 weeks to 15-week-old male SHR. Echocardiographic estimation of cardiac morphology and function revealed cardiac hypertrophy in SHR compared with Wistar-Kyoto rats (WKY) which were used as normal controls. Both treated groups revealed regression of cardiac hypertrophy estimated by echocardiography. Heart to body weight ratio of treated SHR was also smaller than that of untreated SHR. Plasma BNP and ANP concentrations were increased in untreated SHR and decreased in the treated groups. Histological examination was performed using light microscopy and the area of fibrosis was estimated by computer. Reduction of the fibrotic area was observed in SHR treated with delapril and candesartan, although the latter was not statistically significant. Immunohistochemical examination using anti-collagen monoclonal antibody showed a decrease of type I collagen in treated SHR as compared with untreated SHR. It is concluded that both angiotensin converting enzyme inhibitor and angiotensin II receptor blocker sufficiently reduce blood pressure in SHR associated with regression of cardiac remodeling.  相似文献   

19.
Cardiac hypertrophy is a major determinant of heart failure. The epidermal growth factor receptor (EGFR) plays an important role in cardiac hypertrophy. Since silibinin suppresses EGFR in vitro and in vivo, we hypothesized that silibinin would attenuate cardiac hypertrophy through disrupting EGFR signaling. In this study, we examined this hypothesis using neonatal cardiac myocytes and fibroblasts induced by angiotensin II (Ang II) and animal model by aortic banding (AB) mice. Our data revealed that silibinin obviously blocked cardiac hypertrophic responses induced by pressure overload. Meanwhile, silibinin markedly reduced the increased generation of EGFR. Moreover, these beneficial effects were associated with attenuation of the EGFR‐dependent ERK1/2, PI3K/Akt signaling cascade. We further demonstrated silibinin decreased inflammation and fibrosis by blocking the activation of NF‐κB and TGF‐β1/Smad signaling pathways in vitro and in vivo. Our results indicate that silibinin has the potential to protect against cardiac hypertrophy, inflammation, and fibrosis through blocking EGFR activity and EGFR‐dependent different intracellular signaling pathways. J. Cell. Biochem. 110: 1111–1122, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

20.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号