首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   

2.
Abstract

A well-defined relationship has to exist between substance concentrations in blood and in breath if blood-borne volatile organic compounds (VOCs) are to be used as breath markers of disease or health. In this study, the impact of inspired substances on this relationship was investigated systematically. VOCs were determined in inspired and expired air and in arterial and mixed venous blood of 46 mechanically ventilated patients by means of SPME, GC/MS. Mean inspired concentrations were 25% of expired concentrations for pentane, 7.5% for acetone, 0.7% for isoprene and 0.4% for isoflurane. Only if inspired concentrations were <5% did substance disappearance rates from blood and exhalation rates correlate well. Exhaled substance concentrations depended on venous and inspired concentrations. Patients with sepsis had higher n-pentane and lower acetone concentrations in mixed venous blood than patients without sepsis (2.27 (0.37–8.70) versus 0.65 (0.33–1.48) nmol L?1 and 69 (22–99) versus 18 (6.7–56) µmol L?1). n-Pentane and acetone concentrations in breath showed no differences between the patient groups, regardless whether or not expired concentrations were corrected for inspired concentrations. In mechanically ventilated patients, concentration profiles of volatile substances in breath may considerably deviate from profiles in blood depending on the relative amount of inspired concentrations. A simple correction for inspired substance concentrations was not possible. Hence, substances having inspired concentrations >5% of expired concentrations should not be used as breath markers in these patients without knowledge of concentrations in blood and breath.  相似文献   

3.
Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant–insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium‐labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore‐induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.  相似文献   

4.
A well-defined relationship has to exist between substance concentrations in blood and in breath if blood-borne volatile organic compounds (VOCs) are to be used as breath markers of disease or health. In this study, the impact of inspired substances on this relationship was investigated systematically. VOCs were determined in inspired and expired air and in arterial and mixed venous blood of 46 mechanically ventilated patients by means of SPME, GC/MS. Mean inspired concentrations were 25% of expired concentrations for pentane, 7.5% for acetone, 0.7% for isoprene and 0.4% for isoflurane. Only if inspired concentrations were <5% did substance disappearance rates from blood and exhalation rates correlate well. Exhaled substance concentrations depended on venous and inspired concentrations. Patients with sepsis had higher n-pentane and lower acetone concentrations in mixed venous blood than patients without sepsis (2.27 (0.37-8.70) versus 0.65 (0.33-1.48) nmol L-1 and 69 (22-99) versus 18 (6.7-56) micromol L-1). n-Pentane and acetone concentrations in breath showed no differences between the patient groups, regardless whether or not expired concentrations were corrected for inspired concentrations. In mechanically ventilated patients, concentration profiles of volatile substances in breath may considerably deviate from profiles in blood depending on the relative amount of inspired concentrations. A simple correction for inspired substance concentrations was not possible. Hence, substances having inspired concentrations>5% of expired concentrations should not be used as breath markers in these patients without knowledge of concentrations in blood and breath.  相似文献   

5.
Cytochrome P450 (P450) open reading frames (ORFs) identified in genome sequences of Bacillus species are potential resources for new oxidation biocatalysts. Phylogenetic analysis of 29 Bacillus P450 ORFs revealed that the P450s consist of a limited number of P450 families, CYP102, CYP106, CYP107, CYP109, CYP134, CYP152, and CYP197. Previously, we identified the catalytic activities of three P450s of Bacillus subtilis towards steroids by rapid substrate screening using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Here, we further applied this method to evaluate the activity of Bacillus cereus P450s towards steroids. Five P450 genes were cloned from B. cereus ATCC 10987 based on its genomic sequence and were expressed in Escherichia coli. These P450s were reacted with a mixture of 30 compounds that mainly included steroids, and the reaction mixtures were analyzed using FT-ICR/MS. We found that BCE_2659 (CYP106) catalyzed the monooxygenation of methyltestosterone, progesterone, 11-ketoprogesterone, medroxyprogesterone acetate, and chlormadinone acetate. BCE_2654 (CYP107) monooxygenated testosterone enanthate, and BCE_3250 (CYP109) monooxygenated testosterone and compactin. Based on the phylogenetic relationship and the known substrate specificities including ones identified in this study, we discuss the catalytic potential of Bacillus P450s towards steroids.  相似文献   

6.
Cytochrome P450 (CYP) 2E1 is induced by ethanol and is postulated to be a source of reactive oxygen species during alcoholic liver disease. However, there was no difference in liver pathology and radical formation between wild-type and CYP2E1 knockout mice fed ethanol. Other CYP isoforms may contribute these effects if CYP2E1 is inhibited or absent. The purpose of this study was, therefore, to determine if blocking most of the P450 isoforms with 1-aminobenzotriazole (ABT; 100 mg/kg i.g.), has any effect on liver damage and oxidative stress due to alcohol in rats and mice. Male C57BL/6 mice and Wistar rats were fed either high-fat control or ethanol-containing enteral diet for 4 weeks. ABT had a significant inhibitory effect on many P450 isoforms independent of concomitant alcohol administration. However, ABT did not protect against liver damage due to alcohol in either species. Indices of oxidative stress and inflammation were also similar in livers from vehicle-treated and ABT-treated animals fed ethanol. In summary, suppression of P450 activity with ABT had no apparent effect on oxidative stress caused by alcohol in both rats and mice. These data support the hypothesis that oxidative stress and liver damage can occur independently of CYP activities in both rats and mice during early alcohol-induced liver injury.  相似文献   

7.
After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar.  相似文献   

8.
Although non-volatile substances toxic to plant pathogenic microorganisms have been extensively studied over the years, few studies have focused on microbial volatile organic compounds (VOCs). The VOCs produced by the yeast Saccharomyces cerevisiae strain CR-1, used in fermentative processes for fuel ethanol production, are able to inhibit the vegetative development of the fungus Guignardia citricarpa, causal agent of the disease citrus black spot. How microbial VOCs affect the development of fungi is not known. Thus, the objective of the present work was to study the effect of the artificial mixture of VOCs identified from S. cerevisiae on intracellular enzymes involved in the mycelial morphogenesis in G. citricarpa. The phytopathogenic fungus was exposed to artificial mixture of VOCs constituted by alcohols (ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and ethyl octanoate) in the proportions naturally found in the atmosphere produced by the yeast. The VOCs inhibited considerably the mycelial development and interfered negatively with the production of the morphogenesis-related enzymes. After 72 h of exposure to the VOCs the laccase and tyrosinase activities decreased 46 and 32%, respectively, however, the effect on the chitinase and β-1,3-glucanase activities was lower, 17 and 13% of inhibition, respectively. Therefore, the exposure of the fungus to the antimicrobial volatiles can influence both fungal mycelial growth rate and activity of enzymes implicated in morphogenesis. This knowledge is important to understand the microbial interactions mediated by VOCs in nature and to develop new strategies to control plant pathogens as G. citricarpa in postharvest.  相似文献   

9.
Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.  相似文献   

10.
Polysaccharides (0.5, 1 and 3 mg ml–1) from cultured broth and mycelia of Phellinus linteus inhibited cytochrome P450 (CYP) 1A1, CYP 1A2, CYP 2B1, and CYP 2E1 activities in rat liver microsomes. The polysaccharides from the broth of Phellinus linteus grown with 5% (v/v) mulberry extract had highest inhibitory potency for CYP 1A1, 1A2 and 2B1 activities. The most potent inhibitor of CYP 2E1 activity were the polysaccharides from the broth of Phellinus linteusgrown with 10% (v/v) mulberry extract.  相似文献   

11.
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn’t been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids.  相似文献   

12.
13.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

14.
Cytochrome P450rm was previously isolated from the basidiomycete yeast Rhodotorula minuta as a bifunctional enzyme with isobutene-forming and benzoate 4-hydroxylase activities. We cloned the gene and corresponding cDNA for P450rm in order to characterize the enzyme in the context of fungal phylogeny and physiology. From the cDNA sequence, P450rm was deduced to have 527 amino acids with a calculated molecular weight of 59 136. P450rm shared 48% amino acid sequence identity with CYP53A1 from Aspergillus niger, indicating that the gene belongs to a novel subfamily of CYP53, CYP53B. However, the organization of the P450rm gene, which has eight exons and seven introns, differed completely to that of CYP53A1. Northern analysis demonstrated that the level of P450rm mRNA expression increased when L-phenylalanine was used as sole carbon source. These results suggest that P450rm has been well conserved during the evolution of fungi as a benzoate 4-hydroxylase in the dissimilation pathway starting from L-phenylalanine Received: 18 February 1997 / Accepted: 18 May 1997  相似文献   

15.
16.
Jasminum spp. is cultivated for their fragrant flowers used in essential oil production and cosmetic uses. An attempt was made to study the temporal variations in floral scent volatiles composition including emitted, free endogenous and glycosyl‐linked volatile compounds from two summer‐blooming species namely, Jasminum auriculatum and Jasminum grandiflorum as well as from two winter‐blooming species namely, Jasminum multiflorum and Jasminum malabaricum. The overall emitted volatile organic compounds (VOCs) were found to be highest when the matrix Porapak Q 80/100 was used with dichloromethane (DCM) as elution solvent. The floral volatile emission from bud to senescence exhibited nocturnal maxima pattern for both the summer‐blooming species. Both the winter‐blooming species emitted its highest concentration at noon. The free endogenous concentrations of all VOCs were low when corresponding emitted concentrations were high. Enzymatic treatment of petal extract revealed that several aromatic volatiles including aromatic alcohols and monoterpenols are synthesized and stored in the flowers as water‐soluble glycosides; these compounds were shown to accumulate in higher amounts in flowers at late bud stage. These findings indicate the utilization of the precursors, i.e. the volatile‐conjugates, through hydrolysis followed by their release as free‐volatiles at flower opening stage. The outcome as a whole suggests a linkage among the temporal pattern of emitted volatiles, free‐endogenous volatiles and glycoside‐bound volatile compounds in all above studied Jasminum spp. and provided an overview of their floral volatilome.  相似文献   

17.
木栓酮及其衍生物在植物中普遍存在且种类繁多,具有丰富的生理药理学活性。木栓酮衍生物是以木栓酮为骨架经细胞色素氧化酶P450(cytochromeP450,CYP450)及UDP葡萄糖醛酸转移酶(UDP-glucuronosyltransferase, UGT)修饰而来。植物中天然木栓酮及其衍生物的含量极低,传统的萃取分离和化学合成效率低、能耗高且污染环境,因此,利用酿酒酵母作为宿主菌生产木栓酮及其衍生物是一种高效且环保的策略。本文从增加前体含量、提高酶活性和产物合成的亚细胞定位等方面介绍并展望了木栓酮在酿酒酵母中高效生产的策略,并介绍了目前几种常见的木栓酮衍生物研究现状,从根据碳骨架相似性挖掘CYP450、蛋白质工程改造CYP450和合成代谢基因簇的挖掘等方面展望了木栓酮衍生物的合成途径解析的新思路。  相似文献   

18.
The P450 monooxygenases CYP102A1 from Bacillus megaterium and CYP102A3 from Bacillus subtilis are fusion flavocytochromes comprising of a P450 heme domain and a FAD/FMN reductase domain. This protein organization is responsible for the extraordinary catalytic activities making both monooxygenases promising enzymes for biocatalysis. CYP102A1 and CYP102A3 are fatty acid hydroxylases that share 65% identity, and their mutants are able to oxidize a wide range of substrates. In an attempt to increase the process stability of CYP102A1, we exchanged the more unstable reductase domain of CYP102A1 with the more stable reductase domain of CYP102A3. Stability of the chimeric fusion protein was determined spectrophotometrically as well as by measuring the hydroxylation activity towards 12-para-nitrophenoxydodecanoic acid (12-pNCA) after incubation at elevated temperatures. In the reaction with 12-pNCA, the new chimeric protein exhibited 88 and 38% of the activity of CYP102A3 and CYP102A1, respectively, but was able to hydroxylate substrates within a wider temperature range compared with the parental enzymes. Maximum activity was obtained at 51°C, and the half-life at 50°C was with 100 min more than ten times longer than that of CYP102A1 (8 min).  相似文献   

19.
Bacterial antagonists are bacteria that negatively affect the growth of other organisms. Many antagonists inhibit the growth of fungi by various mechanisms, e.g., secretion of lytic enzymes, siderophores and antibiotics. Such inhibition of fungal growth may indirectly support plant growth. Here, we demonstrate that small organic volatile compounds (VOCs) emitted from bacterial antagonists negatively influence the mycelial growth of the soil-borne phytopathogenic fungus Rhizoctonia solani Kühn. Strong inhibitions (99–80%) under the test conditions were observed with Stenotrophomonas maltophilia R3089, Serratia plymuthica HRO-C48, Stenotrophomonas rhizophila P69, Serratia odorifera 4Rx13, Pseudomonas trivialis 3Re2-7, S. plymuthica 3Re4-18 and Bacillus subtilis B2g. Pseudomonas fluorescens L13-6-12 and Burkholderia cepacia 1S18 achieved 30% growth reduction. The VOC profiles of these antagonists, obtained through headspace collection and analysis on GC-MS, show different compositions and complexities ranging from 1 to almost 30 compounds. Most volatiles are species-specific, but overlapping volatile patterns were found for Serratia spp. and Pseudomonas spp. Many of the bacterial VOCs could not be identified for lack of match with mass-spectra of volatiles in the databases.  相似文献   

20.
While plants of a single species emit a diversity of volatile organic compounds (VOCs) to attract or repel interacting organisms, these specific messages may be lost in the midst of the hundreds of VOCs produced by sympatric plants of different species, many of which may have no signal content. Receivers must be able to reduce the babel or noise in these VOCs in order to correctly identify the message. For chemical ecologists faced with vast amounts of data on volatile signatures of plants in different ecological contexts, it is imperative to employ accurate methods of classifying messages, so that suitable bioassays may then be designed to understand message content. We demonstrate the utility of ‘Random Forests’ (RF), a machine‐learning algorithm, for the task of classifying volatile signatures and choosing the minimum set of volatiles for accurate discrimination, using data from sympatric Ficus species as a case study. We demonstrate the advantages of RF over conventional classification methods such as principal component analysis (PCA), as well as data‐mining algorithms such as support vector machines (SVM), diagonal linear discriminant analysis (DLDA) and k‐nearest neighbour (KNN) analysis. We show why a tree‐building method such as RF, which is increasingly being used by the bioinformatics, food technology and medical community, is particularly advantageous for the study of plant communication using volatiles, dealing, as it must, with abundant noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号