首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Chronic Obstructive Pulmonary Disease (COPD) is characterized by an enhanced inflammatory response to smoking that persists despite quitting. The resolution of inflammation (catabasis) is a complex and highly regulated process where tissue resident macrophages play a key role since they phagocytose apoptotic cells (efferocytosis), preventing their secondary necrosis and the spill-over of their pro-inflammatory cytoplasmic content, and release pro-resolution and tissue repair molecules, such as TGFβ, VEGF and HGF. Because inflammation does not resolve in COPD, we hypothesized that catabasis may be abnormal in these patients.

Methods

To explore this hypothesis, we studied lung tissue samples obtained at surgery from 21 COPD patients, 22 smokers with normal spirometry and 13 non-smokers controls. In these samples we used: (1) immunohistochemistry to assess the expression of CD44, CD36, VEGF and TGFβ in lung macrophages; (2) real time PCR to determine HGF, PPARγ, TGFβ, VEGF and MMP-9 gene expression; and, (3) ELISA to quantify lipoxin A4, a lipid mediator of catabasis.

Results

We found that current and former smokers with COPD showed: (1) more inflammation (higher MMP-9 expression); (2) reduced macrophage surface expression of CD44, a key efferocytosis receptor; and, (3) similar levels of TGFβ, VEGF, HGF, PPARγ, and lipoxin A4 than smokers with normal spirometry, despite the presence of inflammation and disease.

Conclusions

These results identify several potential abnormalities of catabasis in patients with COPD.  相似文献   

2.
Chronic obstructive pulmonary disease (COPD) is a major public health problem with increasing prevalence worldwide. The primary aim of this study was to identify genes and gene ontologies associated with COPD severity. Gene expression profiling was performed on total RNA extracted from lung tissue of 18 former smokers with COPD. Class comparison analysis on mild (n = 9, FEV1 80–110% predicted) and moderate (n = 9, FEV1 50–60% predicted) COPD patients identified 46 differentially expressed genes (p<0.01), of which 14 genes were technically confirmed by quantitative real-time-PCR. Biological replication in an independent test set of 58 lung samples confirmed the altered expression of ten genes with increasing COPD severity, with eight of these genes (NNMT, THBS1, HLA-DPB1, IGHD, ETS2, ELF1, PTGDS and CYRBD1) being differentially expressed by greater than 1.8 fold between mild and moderate COPD, identifying these as candidate determinants of COPD severity. These genes belonged to ontologies potentially implicated in COPD including angiogenesis, cell migration, proliferation and apoptosis. Our secondary aim was to identify gene ontologies common to airway obstruction, indicated by impaired FEV1 and KCO. Using gene ontology enrichment analysis we have identified relevant biological and molecular processes including regulation of cell-matrix adhesion, leukocyte activation, cell and substrate adhesion, cell adhesion, angiogenesis, cell activation that are enriched among genes involved in airflow obstruction. Exploring the functional significance of these genes and their gene ontologies will provide clues to molecular changes involved in severity of COPD, which could be developed as targets for therapy or biomarkers for early diagnosis.  相似文献   

3.

Background

Myeloid dendritic cells (DCs) are increased in the airway wall of patients with chronic obstructive pulmonary disease (COPD), and postulated to play a crucial role in COPD. However, DC phenotypes in COPD are poorly understood.

Methods

Function-associated surface molecules on bronchoalveolar lavage fluid (BALF) DCs were analyzed using flow cytometry in current smokers with COPD, in former smokers with COPD and in never-smoking controls.

Results

Myeloid DCs of current smokers with COPD displayed a significantly increased expression of receptors for antigen recognition such as BDCA-1 or Langerin, as compared with never-smoking controls. In contrast, former smokers with COPD displayed a significantly decreased expression of these receptors, as compared with never-smoking controls. A significantly reduced expression of the maturation marker CD83 on myeloid DCs was found in current smokers with COPD, but not in former smokers with COPD. The chemokine receptor CCR5 on myeloid DCs, which is also important for the uptake and procession of microbial antigens, was strongly reduced in all patients with COPD, independently of the smoking status.

Conclusion

COPD is characterized by a strongly reduced CCR5 expression on myeloid DCs in the airway lumen, which might hamper DC interactions with microbial antigens. Further studies are needed to better understand the role of CCR5 in the pathophysiology and microbiology of COPD.  相似文献   

4.
《Free radical research》2013,47(11):1296-1303
Abstract

A total of 267 clinically stable chronic obstructive pulmonary disease (COPD) patients provided complete data about diet and oxidative stress markers in order to assess the relationship between antioxidant rich food groups and nutrients, and serum markers of oxidative stress in COPD. Dietary data of the last 2 years was assessed using a validated food frequency questionnaire (122 items). Levels of carbonyls, nitrotyrosine, malondialdehyde and reduced glutathione (GSH) were measured in serum. Vitamin E intake was inversely associated with levels of carbonyls (p = 0.05) and olive oil was positively associated with GSH levels (p = 0.01), in active smokers. Intake of vegetables was related to a decrease of malondialdehyde levels (p = 0.04) in former smokers. No statistically significant associations were found between remaining dietary antioxidants and serum oxidative stress markers. These results provide new data for a potential dietary modulation of systemic oxidative stress in COPD patients, particularly in those that continue smoking.  相似文献   

5.
Zhang  Lin  Hao  Changfu  Zhai  Ruonan  Wang  Di  Zhang  Jianhui  Bao  Lei  Li  Yiping  Yao  Wu 《Respiratory research》2018,19(1):1-9
Background

Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue.

Methods

The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression.

Results

15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression.

Conclusion

This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue.

  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most important environmental risk factor for COPD, nevertheless, only approximately 20–30% of smokers develop symptomatic disease. Epidemiological studies, case-control studies in relatives of patients with COPD, and twin studies suggest that COPD is a genetically complex disease with environmental factors and many involved genes interacting together. Two major strategies have been employed to identify the genes and the polymorphisms that likely contribute to the development of complex diseases: association studies and linkage analyses. Biologically plausible pathogenetic mechanisms are prerequisites to focus the search for genes of known function in association studies. Protease-antiprotease imbalance, generation of oxidative stress, and chronic inflammation are recognized as the principal mechanisms leading to irreversible airflow obstruction and parenchymal destruction in the lung. Therefore, genes which have been implicated in the pathogenesis of COPD are involved in antiproteolysis, antioxidant barrier and metabolism of xenobiotic substances, inflammatory response to cigarette smoke, airway hyperresponsiveness, and pulmonary vascular remodelling. Significant associations with COPD-related phenotypes have been reported for polymorphisms in genes coding for matrix metalloproteinases, microsomal epoxide hydrolase, glutathione-S-transferases, heme oxygenase, tumor necrosis factor, interleukines 1, 8, and 13, vitamin D-binding protein and β-2-adrenergic receptor (ADRB2), whereas adequately powered replication studies failed to confirm most of the previously observed associations. Genome-wide linkage analyses provide us with a novel tool to identify the general locations of COPD susceptibility genes, and should be followed by association analyses of positional candidate genes from COPD pathophysiology, positional candidate genes selected from gene expression studies, or dense single nucleotide polymorphism panels across regions of linkage. Haplotype analyses of genes with multiple polymorphic sites in linkage disequilibrium, such as the ADRB2 gene, provide another promising field that has yet to be explored in patients with COPD. In the present article we review the current knowledge about gene polymorphisms that have been recently linked to the risk of developing COPD and/or may account for variations in the disease course.  相似文献   

7.
Chronic obstructive pulmonary disease (COPD) is a complex disease, the pathogenesis of which remains incompletely understood. Colonization with Pneumocystis jirovecii may play a role in COPD pathogenesis; however, the mechanisms by which such colonization contributes to COPD are unknown. The objective of this study was to determine lung gene expression profiles associated with Pneumocystis colonization in patients with COPD to identify potential key pathways involved in disease pathogenesis. Using COPD lung tissue samples made available through the Lung Tissue Research Consortium (LTRC), Pneumocystis colonization status was determined by nested PCR. Microarray gene expression profiles were performed for each sample and the profiles of colonized and non‐colonized samples compared. Overall, 18 participants (8.5%) were Pneumocystis‐colonized. Pneumocystis colonization was associated with fold increase in expression of four closely related genes: INF‐γ and the three chemokine ligands CXCL9, CXCL10, and CXCL11. These ligands are chemoattractants for the common cognate receptor CXCR3, which is predominantly expressed on activated Th1 T‐lymphocytes. Although these ligand–receptor pairs have previously been implicated in COPD pathogenesis, few initiators of ligand expression and subsequent lymphocyte trafficking have been identified: our findings implicate Pneumocystis as a potential trigger. The finding of upregulation of these inflammatory genes in the setting of Pneumocystis colonization sheds light on infectious‐immune relationships in COPD.  相似文献   

8.

Background

Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.

Methods

We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.

Results

Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.

Conclusion

Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.  相似文献   

9.
Allele distribution at a highly polymorphic minisatellite adjacent to the c-Hras1 gene as well as deletions of microsatellite markers, D3S966, D3S1298, D9S171, and a microsatellite within p53 gene, were examined in bronchial epithelium specimens obtained from 53 chronic obstructive pulmonary disease (COPD) patients and healthy donors. A higher frequency of rare Hras1minisatellite alleles in COPD patients than in the individuals without pulmonary pathology (6.6% versus 2.2%; P < 0.05) was shown. This difference was most pronounced in the group of ten COPD patients with idiopathic pulmonary fibrosis. Three of these patients had rare Hras1 minisatellite allele (P < 0.02 in comparison with healthy controls). Alterations in at least one of the microsatellite markers (deletions or microsatellite instability) were detected in bronchial epithelium samples obtained from: 4 of 10 COPD patients with pneumofibrosis (40%); 15 of 43 COPD patients (34.9%) without pneumofibrosis; and 8 of 20 tobacco smokers (40%) without pulmonary pathology. These defects were not observed in the analogous samples obtained from healthy nonsmoking individuals. No statistically significant differences were revealed between COPD patients and healthy smokers upon comparison of both the total number of molecular defects and the number of defects in the individual chromosomal loci. The total number of molecular defects revealed in bronchial epithelium samples from the individuals of two groups examined correlated with the intensity of exposure to tobacco smoke carcinogens (r = 0.28; P < 0.05). These findings suggest that rare alleles at theHras1 locus may be associated with hereditary predisposition to COPD and the development of pneumofibrosis, while mutations in microsatellite markers result from exposure to tobacco smoke carcinogens and are not associated with the appearance of these pathologies.  相似文献   

10.

Background

Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.

Methods

We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.

Results

Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.

Conclusion

Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis.  相似文献   

11.
The current pilot study examined the hypothesis that cigarette smokers who developed an emphysematous phenotype of Chronic Obstructive Pulmonary Disease (COPD) were associated with distinctive patterns in their corresponding metabolomics profile as compared to those who did not. Peripheral blood plasma samples were collected from 38 subjects with different phenotypes of COPD. They were categorized into three groups: healthy non-smokers (n = 16), smokers without emphysema (n = 8), and smokers with emphysema (n = 14). Ultra High Performance Liquid Chromatography/quadrupole-Time-of-Flight Mass Spectrometry techniques were used to identify a large number of metabolite markers (3534). Unsupervised clustering analysis accurately separated the smokers with emphysema from others without emphysema and demonstrated potentials of this metabolomics data. Subsequently predictive models were created with a supervised learning set, and these predictive models were found to be highly accurate in identifying the subjects with the emphysematous phenotype of COPD with excellent sensitivity and specificity. Our methodology provides a preliminary model that differentiates an emphysematous COPD phenotype from other COPD phenotypes on the basis of the metabolomics profiles. These results also suggest that the metabolomics profiling could potentially guide the characterization of relevant metabolites that leads to an emphysematous COPD phenotype.  相似文献   

12.
《Biomarkers》2013,18(5):356-367
Abstract

Context: Biomarkers of biological effect (BOBE) have been proposed as potential tools to assess tobacco product use, toxicity and disease risk.

Objective: To determine if candidate BOBE can distinguish between smokers, never-smokers and former smokers.

Methods: Biomarker levels were compared from 143 smokers, 61 never-smokers and 61 ex-smokers.

Results: In total, 27 candidate biomarkers were assessed, 14 were significantly different between smokers and never-smokers (p?<?0.01) and of these 14 biomarkers, 12 were able to distinguish between smokers and former smokers (p?<?0.05), which indicates the potential for reversibility.

Conclusions: A total of 12 of 27 BOBE are potentially useful tools for future product assessment.  相似文献   

13.
BackgroundConflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.ResultsCOPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.ConclusionsCigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.  相似文献   

14.
15.
16.
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD.  相似文献   

17.
18.
Background: Chronic obstructive pulmonary disease (COPD) is characterized by airway inflammation with endothelial dysfunction. Cadherins are adhesion molecules on epithelial (E-) and vascular endothelial (VE-) cells. Soluble (s) cadherin is released from the cell surface by the effects of proteases including matrix metalloproteinases (MMPs).

Objective: The aim of this study was to examine the associations of sE-/sVE-cadherin levels in plasma with the development of COPD.

Methods: Plasma sE-/VE-cadherin levels were measured by an enzyme-linked immunosorbent assay in 115 patients with COPD, 36 symptomatic smokers (SS), 63 healthy smokers (HS) and 78 healthy non-smokers (HN). sE-cadherin and MMP-7 levels in epithelial lining fluid (ELF) were measured in 24 patients (12 COPD and 12 control).

Results: Plasma sE-cadherin levels and sE-cadherin/sVE-cadherin ratios were significantly higher in COPD and SS than in HS and HN groups, while plasma sVE-cadherin levels were lower in COPD than in HS and HN groups (p?p?p?p?Conclusions: Plasma sE-cadherin levels and sE-cadherin/sVE-cadherin ratios are potential biomarkers for COPD.  相似文献   

19.
Abstract

Introduction: This study aimed to examine the association of smoking status with homocysteine levels and to determine whether the association is modified by oestradiol or cholesterol.

Methods: Data (N?=?4580) were obtained from National Health and Nutrition Examination Survey 2003–2004 with analysis done in 2018 on adults aged ≥20 years. The outcome was homocysteine; smoking status was the exposure variable and categorized as current, former or never smoker. Generalized linear models were used to examine the associations between smoking status and homocysteine levels, while assessing the impact of oestradiol and cholesterol.

Results: After adjusting for age, sex, ethnicity, education and income level, homocysteine levels did differ by smoking status ((current smokers versus never smokers: β: 0.18?CI: 0.00, 0.36), (former smokers: β: 0.10?CI: –0.09, 0.28)). The addition of oestradiol as an interaction term in adjusted models was associated with a 16.6% increase in homocysteine levels when compared to models without the interaction term. Oestradiol but not cholesterol did moderate the association between smoking status and homocysteine levels.

Discussion and conclusions: Homocysteine levels did differ across smoking status after adjusting for confounders. Oestradiol did moderate the relationship between homocysteine and smoking status.  相似文献   

20.

Background

Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers.

Methods

Current smokers with COPD (GOLD stage ≥ 2) or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND). Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung <-950 HU) and gas trapping on expiratory CT (% of lung <-856 HU) were obtained. Genotypes for two SNPs in the CHRNA3/5 region (rs8034191, rs1051730) previously associated with nicotine dependence and COPD were analyzed for association to COPD and nicotine dependence phenotypes.

Results

Among 842 currently smoking subjects (335 COPD cases and 507 controls), 329 subjects (39.1%) showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p < .0001) as well as in COPD cases (ρ = -0.18, p = 0.0008). Lower FTND score, male gender, lower body mass index, and lower FEV1 were independent risk factors for emphysema severity in COPD cases. Both CHRNA3/5 SNPs were associated with FTND in current smokers. An association of genetic variants in CHRNA3/5 with severity of emphysema was only found in former smokers, but not in current smokers.

Conclusions

Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes.

Trial registration

ClinicalTrials (NCT): NCT00608764  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号