首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Levocetirizine, an active enantiomer of cetirizine is third generation antihistaminic agent used for treating various allergies like atopic dermatitis, chronic idiopathic urticaria and allergic rhinitis.

Objective: Development of novel topical formulation of levocetirizine based on flexible vesicles (FVs) with an aim to have targeted peripheral antihistaminic effect.

Materials and methods: The FVs were prepared by thin film hydration method and characterized for drug content, entrapment efficiency, pH, vesicular size, spreadability, morphological characteristics and drug leakage studies. Franz diffusion cell assembly was used to carry out the ex vivo permeation studies through mice skin and the permeation profile of the developed FV formulation was compared with conventional formulations of levocetirizine.

Results and discussion: The ex vivo permeation studies revealed 1.78-fold increase in percent permeation of levocetirizine from FV formulation as compared to conventional formulations of levocetirizine in 8?h. Further, oxazolone induced atopic dermatitis murine model was selected to study the in vivo pharmacodynamic activity. The developed formulation was evaluated for scratching score, erythema score and histological evaluation. There was marked reduction in scratching score from 15.25 scratches/20?min with conventional levocetirizine cream to 6.75 scratches/20?min with application of levocetirizine FV formulation. Also, there was significant reduction in erythema score as well as dermal eosinophil count. Results of skin sensitivity and toxicity studies suggest that the developed formulation was dermally safe and nontoxic.

Conclusion: A novel FVs based topical formulation of levocetirizine was successfully developed for treatment of atopic dermatitis.  相似文献   

2.
Monosialoganglioside (GM1) is a neuroprotective agent that has been reported to scavenge free radicals generated during reperfusion and to protect receptors and enzymes from oxidative damage. However, only a few studies have attempted to investigate the effects of GM1 on enzymatic antioxidant defenses of the brain. In the present study, we evaluate the effects of the systemic administration of GM1 on the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and on spontaneous chemiluminescence and total radical-trapping potential (TRAP) in cerebral cortex of rats ex vivo. The effects of GM1 on CAT activity and spontaneous chemiluminescence in vitro were also determined.

Animals received two injections of GM1 (50?mg/kg, i.p.) or saline (0.85% NaCl, i.p.) spaced 24?h apart. Thirty minutes after the second injection the animals were sacrificed and enzyme activities and spontaneous chemiluminescence and TRAP were measured in cell-free homogenates. GM1 administration reduced spontaneous chemiluminescence and increased catalase activity ex vivo, but had no effect on TRAP, SOD or GSH-Px activities. GM1, at high concentrations, reduced CAT activity in vitro. We suggest that the antioxidant activity of GM1 ganglioside in the cerebral cortex may be due to an increased catalase activity.  相似文献   

3.
Ex vivo regenerated stratum corneum (SC) after tape-stripping can be used as a model to study the barrier function of compromised skin. Yet, details about how close the regenerated SC model mimics the lipid properties (e.g. lipid composition and lipid ordering) of the in vivo situation are not known. Here, we examined using a comprehensive ceramide analysis whether human ex vivo regenerated SC showed similar lipid properties as human in vivo regenerated SC. Both in vivo and ex vivo regenerated SC had an altered ceramide subclass composition, with increased percentages of sphingosine-based subclass and decreased percentages of phytosphingosine-based subclass ceramides, a reduced mean ceramide chain length, and a higher percentage of unsaturated ceramides. Overall, regenerated SC ex vivo showed more pronounced but similar changes compared to the in vivo response. One of the purposes of these models is to use them to mimic compromised skin of inflammatory skin diseases. The altered lipid properties in regenerated SC were comparable to those observed in several inflammatory skin diseases, which makes them a valuable model for the barrier properties in inflammatory skin diseases.  相似文献   

4.
A 27 year-old woman presented with disseminated infection due toMycobacterium kansasii. Signs and symptoms of disseminated infection persisted despite the administration of multiple antimycobacterial agents to which her organism was sensitive for 15 months. She was seronegative for HIV-1 and functional studies of T and B lymphocytes and granulocytes failed to demonstrate any abnormality. Peripheral blood monocytes proved abnormally permissive to the intracellular growth ofMycobacterium avium andM. kansasii, and expressed normal number of receptors to interferon-gamma, but reduced numbers of receptors to granulocyte monocyte colony stimulating factor and tumor necrosis factor. These defects were partially reversed within vitro exposure of her cells to recombinant GM-CSF. In addition, administration of recombinant human GM-CSFin vivo (250 mg/M2 per day) for 10 days armed her circulating monocytes as evidenced by increased production of O2 in response to phorbol esther and, when infectedex vivo withM. kansasii, enhanced inhibition of intracellular growth compared with pre-therapy monocytes. These defects reappeared with discontinuation of GM-CSF and resolved with its re-administration. While a salutary clinical and microbiologic effect was difficult to assess, administration of GM-CSFin vivo was associated within vitro activation of monocytes and enhanced mycobactericidal activity in this patient with a defect in monocyte function.  相似文献   

5.
We aimed to determine how age‐associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23–25 months) and adult (3–4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL?1 atropine + 1 mg mL?1 propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad‐spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input.  相似文献   

6.
Abstract

Context: Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role.

Objective: MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma.

Materials and methods: This compound showed good affinity and selectivity towards A2A/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs.

Results: The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies.

Discussion: These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation.

Conclusion: Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.  相似文献   

7.
Injection of hematopoietic stem cells or endothelial progenitor cells (EPCs) expanded ex vivo has been shown to augment neovascularization in adult patients, but the precise origin and identity of the cell population responsible for these clinical benefits are controversial. The limited quantity of EPCs in the circulation has been the main obstacle to clinical trials. Several authors have therefore attempted to expand these cells ex vivo in order to obtain a homogeneous cell therapy product. One possible means of expanding EPCs ex vivo is to activate the thrombin receptor PAR-1 with the specific peptide SFLLRN. Indeed, PAR-1 activation promotes cell proliferation and C-X-C chemokine receptor type 4 (CXCR4) dependent migration and differentiation, with an overall angiogenic effect. This review summarizes the results and rationale of clinical trials of angiogenic therapy, the nature of EPCs, the different methods of ex vivo expansion, and current methods of quantification.  相似文献   

8.
Deficient energy metabolism and network hyperactivity are the early symptoms of Alzheimer's disease (AD). In this study, we show that administration of exogenous oxidative energy substrates (OES) corrects neuronal energy supply deficiency that reduces the amyloid‐beta‐induced abnormal neuronal activity in vitro and the epileptic phenotype in AD model in vivo. In vitro, acute application of protofibrillar amyloid‐β1–42 (Aβ1–42) induced aberrant network activity in wild‐type hippocampal slices that was underlain by depolarization of both the neuronal resting membrane potential and GABA‐mediated current reversal potential. Aβ1–42 also impaired synaptic function and long‐term potentiation. These changes were paralleled by clear indications of impaired energy metabolism, as indicated by abnormal NAD(P)H signaling induced by network activity. However, when glucose was supplemented with OES pyruvate and 3‐beta‐hydroxybutyrate, Aβ1–42 failed to induce detrimental changes in any of the above parameters. We administered the same OES as chronic supplementation to a standard diet to APPswe/PS1dE9 transgenic mice displaying AD‐related epilepsy phenotype. In the ex‐vivo slices, we found neuronal subpopulations with significantly depolarized resting and GABA‐mediated current reversal potentials, mirroring abnormalities we observed under acute Aβ1‐42 application. Ex‐vivo cortex of transgenic mice fed with standard diet displayed signs of impaired energy metabolism, such as abnormal NAD(P)H signaling and strongly reduced tolerance to hypoglycemia. Transgenic mice also possessed brain glycogen levels twofold lower than those of wild‐type mice. However, none of the above neuronal and metabolic dysfunctions were observed in transgenic mice fed with the OES‐enriched diet. In vivo, dietary OES supplementation abated neuronal hyperexcitability, as the frequency of both epileptiform discharges and spikes was strongly decreased in the APPswe/PS1dE9 mice placed on the diet. Altogether, our results suggest that early AD‐related neuronal malfunctions underlying hyperexcitability and energy metabolism deficiency can be prevented by dietary supplementation with native energy substrates.  相似文献   

9.
To investigate the bioavailability and mode of action of theanine against cancer, we examined in vitro and ex vivo effects of theanine on invasion of a rat ascites hepatoma cell line of AH109A. Theanine dose-dependently inhibited the invasion of AH109A cells across rat mesentery-derived mesothelial-cell (M-cell) monolayers without restraining AH109A cell proliferation in vitro. Rat sera obtained after oral intubation of theanine also inhibited the invasion. A competitive N-methyl-D-aspartate (NMDA) type glutamate receptor antagonist, (±) 2-amino-5-phosphonopentanoic acid (AP-5), dose-dependently counteracted the theanine-mediated in vitro and ex vivo inhibition of AH109A invasion. A competitive non-NMDA type glutamate receptor antagonist, 6,7-dinitroquinoxaline 2,3-dione (DNQX), did not affect this inhibition by theanine in vitro. These results suggest that the inhibition of AH109A invasion by theanine may be mediated by the NMDA receptor of AH109A. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

11.
We characterized the accuracy, sensitivity, and reliability of computed tomographic (CT) estimates of intra‐abdominal (IA) and subcutaneous (S) adipose tissue (AT) in rats and mice using the Aloka rodent CT. Here, we present the first comparisons of CT estimates of the weights of AT samples ex vivo to balance weights of the same samples, of CT estimates of AT weights in vivo to the weights of resected whole‐body AT, and of CT estimates of the weights of pieces of AT inserted IA or S in vivo to the weights of the same pieces ex vivo. CT underestimated AT weight ex vivo by ~10%, and correction of the automated categorization of IAAT and SAT by Aloka software was required. After these adjustments, correlations (r) of CT estimates and balance weights of resected AT were ≥0.99 in rats and ≥0.92 in mice. CT was impressively sensitive: the 95% probability range of CT estimates of 10,000 mg AT inserts into rats was ±780 mg and of 500 mg inserts into mice, ±20 mg. Scans limited to the abdominal region correlated well (r > 0.90) with whole‐body scan measures of IAAT and SAT in rats and with IAAT, but not SAT (r < 0.80), in mice. Sums of IAAT and SAT correlated well with body weight in rats (r > 0.90), but not in mice (r < 0.80). Coefficients of variance (CVs) of duplicate scans were <5%. We conclude that CT is a valid tool for studies of AT weight in rats and mice, especially when rapid throughput or longitudinal measures are desired.  相似文献   

12.
By developing novel screening technologies to test effects of food ingredients on hormone release, which are comparable to the in vivo situation, fewer tests may have to be performed using volunteers, whereas it still provides information that can be extrapolated to the human situation. In an in vivo intervention study, 10 lean (BMI: 20–25 kg/m2) and 10 obese (BMI >30 kg/m2) were recruited. All subjects randomly received pea protein (PP) solutions or placebo, orally and intraduodenally. Cholecystokinin (CCK) and glucagon like peptide 1 (GLP‐1) release was measured over 2 h. During the oral interventions, gastrointestinal (GI) fluids were retrieved. For the present ex vivo study, duodenal biopsies were taken and placed in Ussing chambers. The luminal side was exposed to PP, placebo, intraduodenal fluid after oral PP‐intake and oral placebo–intake in vivo, and a commercial pea‐hydrolysate for 2 h. CCK and GLP‐1 levels were measured at the serosal side. After intraduodenal PP administration in vivo, the area under the curve (AUC) for both CCK and GLP‐1 was significantly increased in both lean and obese subjects. In the ex vivo study, exposure to PP resulted in significantly elevated levels of CCK and GLP‐1 compared to all other test solutions. These results indicate that the ex vivo Ussing chamber technology is a valid alternative for in vivo studies, and may therefore serve as a suitable screening tool for studying the effects of nutritional compounds on the release of satiety hormones.  相似文献   

13.
Light subunit of mushroom tyrosinase (LSMT) is a protein of unknown function from mushroom Agaricus bisporus that has been demonstrated to permeate through rat intestine ex vivo. Thus, it can be absorbed in the intestine, thereby holding a promise as a drug carrier for oral administration, similar to HA‐33 protein from botulinum, one of the closest structural homologs of LSMT. However, the safety of LSMT should be ensured prior to its use. Here, we described biological response of LSMT upon weekly intraperitoneal administration of 50 μg/day to the Balb/c mice for 12 weeks. Motoric and behavior profiles, as well as the index of main organs (liver, spleen, lung, heart, and kidney), and body weight, were not significantly changed as compared with the control group. Also, no IgG was detected in the serum. The results suggest that LSMT is safe for further development.  相似文献   

14.
Coronary artery bypass grafting (CABG) triggers a systemic inflammatory response that may contribute to adverse outcomes. Dendritic cells (DC) and monocytes are immunoregulatory cells potentially affected by CABG, contributing to an altered immune state. This study investigated changes in DC and monocyte responses in CABG patients at 5 time‐points: admission, peri‐operative, ICU, day 3 and day 5. Whole blood from 49 CABG patients was used in an ex vivo whole blood culture model to prospectively assess DC and monocyte responses. Lipopolysaccharide (LPS) was added in parallel to model responses to an infectious complication. Co‐stimulatory and adhesion molecule expression and intracellular mediator production was measured by flow cytometry. CABG modulated monocyte and DC responses. In addition, DC and monocytes were immunoparalysed, evidenced by failure of co‐stimulatory and adhesion molecules (eg HLA‐DR), and intracellular mediators (eg IL‐6) to respond to LPS stimulation. DC and monocyte modulation was associated with prolonged ICU length of stay and post‐operative atrial fibrillation. DC and monocyte cytokine production did not recover by day 5 post‐surgery. This study provides evidence that CABG modulates DC and monocyte responses. Using an ex vivo model to assess immune competency of CABG patients may help identify biomarkers to predict adverse outcomes.  相似文献   

15.
Emerging evidence supports the concept that biochemical markers are clinically useful non-invasive diagnostic tools for the monitoring of changes in cartilage turnover in patients with destructive joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). Epidemiological studies demonstrated that measurements of different degradation products of proteins in the extracellular matrix of hyaline cartilage in urine or serum samples are (1) increased in OA or RA patients compared with healthy individuals, (2) correlate with disease activity, and (3) are predictive for the rate of changes in radiographic measures of cartilage loss. The present review provides an updated list of available biomarkers and summarize the research data arguing for their clinical utility. In addition, it addresses the question whether or not the monitoring of biomarkers during different treatment modalities could be a useful approach to characterize the chondro-protective effects of approved and candidate drugs. Finally, it briefly reviews the in vitro/ex vivo experimental settings — isolated chondrocyte cultures and articular cartilage explants — that can assist in the verification of novel markers, but also studies assessing direct effects of drug candidates on chondrocytes. Collectively, biomarkers may acquire a function as established efficacy parameters in the clinical development of novel chondro-protective agents.  相似文献   

16.
It was postulated that prior demanding exercise would suppress the induction of the oxidant-responsive protein Heme Oxygenase-1 (HO-1) in mononuclear cells following subsequent ex vivo H2O2 treatment. Eight male subjects completed two trials in a randomized order (one rest and one exercise) and ex vivo HO-1 protein induction was determined following H2O2 treatment in lymphocytes and monocytes before and after each trial using a newly developed and reproducible assay. Lymphocytes obtained 2 h post-exercise showed a modest reduction in HO-1 protein expression in response to ex vivo treatment with H2O2 (p<0.05). The plasma concentration of the HO-1 suppressor α1-antitrypsin increased immediately post-exercise (p<0.05) and it is tentatively suggested that this may explain the modest transient reduction in ex vivo HO-1 protein induction in lymphocytes in response to an independent oxidant challenge following a prior bout of demanding exercise.  相似文献   

17.
Context: Activation of the tumor suppressor protein p53 facilitates the cellular response to genotoxic stress. Thus, releasing the wild-type p53 from indirect suppression would be crucial to successful killing of cancer cells by DNA-damaging therapeutic agents.

Objective: The aim of this study was to investigate the inhibitory role of cyclic adenosine monophosphate (cAMP) levels on p53 protein in acute lymphoblastic leukemia (ALL) cells. More importantly, we were interested to show through which receptor cAMP acts to promote p53 degradation.

Materials and methods: In cell cultures, we investigated the effects of forskolin/3-isobutyl-1-methylxanthine (IBMX) on stimulated p53 of ALL cell lines. Western blotting analysis was performed to detect the expression of p53, phospho-p53, acetylated-p53, phospho-cAMP response element-binding protein (CREB), and Mdm2 proteins. Flow cytometry was applied to analyze apoptosis. The gene expression of p53 and its target genes was examined by real-time polymerase chain reaction.

Results: We show that elevation of cAMP levels in ALL cells exposed to DNA damage attenuates p53 accumulation. Inhibition of proteosome function with MG-132 reversed the inhibitory effect of cAMP on p53. However, targeting the p53–Mdm2 interaction did not rescue accumulated p53 from the destabilizing signal of cAMP. The specific agonist of the cAMP receptor exchange protein activated by cAMP had no effect on p53 expression in doxorubicin-treated NALM-6 cells, whereas PKA activators decreased p53 accumulation.

Discussion and conclusion: Our studies demonstrate that cAMP-PKA pathway regulates the sensitivity toward DNA-damaging agents via inhibition of a p53-dependent pathway in B-cell precursor ALL (BCP-ALL) cells.  相似文献   

18.

Background

GPCRs regulate a remarkable diversity of biological functions, and are thus often targeted for drug therapies. Stimulation of a GPCR by an extracellular ligand triggers receptor signaling via G proteins, and this process is highly regulated. Receptor activation is typically accompanied by desensitization of receptor signaling, a complex feedback regulatory process of which receptor internalization is postulated as a key event. The in vivo significance of GPCR internalization is poorly understood. In fact, the majority of studies have been performed in transfected cell systems, which do not adequately model physiological environments and the complexity of integrated responses observed in the whole animal.

Methods and Findings

In this study, we used knock-in mice expressing functional fluorescent delta opioid receptors (DOR-eGFP) in place of the native receptor to correlate receptor localization in neurons with behavioral responses. We analyzed the pain-relieving effects of two delta receptor agonists with similar signaling potencies and efficacies, but distinct internalizing properties. An initial treatment with the high (SNC80) or low (AR-M100390) internalizing agonist equally reduced CFA-induced inflammatory pain. However, subsequent drug treatment produced highly distinct responses. Animals initially treated with SNC80 showed no analgesic response to a second dose of either delta receptor agonist. Concomitant receptor internalization and G-protein uncoupling were observed throughout the nervous system. This loss of function was temporary, since full DOR-eGFP receptor responses were restored 24 hours after SNC80 administration. In contrast, treatment with AR-M100390 resulted in retained analgesic response to a subsequent agonist injection, and ex vivo analysis showed that DOR-eGFP receptor remained G protein-coupled on the cell surface. Finally SNC80 but not AR-M100390 produced DOR-eGFP phosphorylation, suggesting that the two agonists produce distinct active receptor conformations in vivo which likely lead to differential receptor trafficking.

Conclusions

Together our data show that delta agonists retain full analgesic efficacy when receptors remain on the cell surface. In contrast, delta agonist-induced analgesia is abolished following receptor internalization, and complete behavioral desensitization is observed. Overall these results establish that, in the context of pain control, receptor localization fully controls receptor function in vivo. This finding has both fundamental and therapeutic implications for slow-recycling GPCRs.  相似文献   

19.
Autohaemotherapy, after a bland treatmentex vivo of blood with ozone, is a fairly unknown medical procedure claimed to have therapeutic value in viral diseases and neoplasms. Having already shown that ozone acts as a mild inducer of cytokines, we have undertaken an investigation in normal rabbits and in normal volunteers aiming to evaluate eventual changes of some cytokine levels in plasma as well as of immunological parameters such as the Mx protein, neopterin,2-microglobulin and of some acute-phase proteins after single or repeated autohaemotherapy. We have also evaluated the potential development of side-effects. This study is the first one to show that autohaemotherapy can activate an immunological marker in normal subjects without procuring any toxic effects.Abbreviations AA antiviral activity - 2-M 2-microglobulin - BRM biological response modifiers - CPD citrate-phosphate-dextrose - GM-CSF granulocyte-macrophage colony stimulating factor - IFN interferon - IL interleukin - LPS lipopolysaccharide - Np neopterin - PBMC peripheral blood mononuclear cells - TIL tumor-infiltrating lymphocytes - TNF tumor necrosis factor  相似文献   

20.
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号