首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In normal Rat Liver Primary Culture (RL-PR-C) liver cells, cAMP was low prior to confluency, then rose continuously as cells became contact inhibited. In contrast, spontaneously transformed RL-PR-C cells did not become contact inhibited, and cAMP decreased steadily with increasing cell density. Normal cells released large amounts of cAMP into the extracellular fluid at all densities, while transformed cells did not do so at any density. Neither exogenous db-cAMP nor phosphodiesterase inhibitors reversed the uncontrolled growth of transformed cells, nor did conditioned media from contact-inhibited normal cells.While both normal and transformed RL-PR-C hepatocytes produced large amounts of cAMP in response to epinephrine and cholera toxin, transformed cells were much more sensitive to these agents; however, only normal cells responded to glucagon. Although the plasma membrane adenylate cyclase of transformed hepatocytes responded better than did that of normal cells to epinephrine, cholera toxin and fluoride, the basal cyclase activity of transformed cells was only about half that of normal cells. The adenylate cyclase of transformed cells did not respond to glucagon, although the number of glucagon receptors of such cells far exceeded that of normal cells. The Vmax of cyclic nucleotide phosphodiesterase of normal hepatocytes was five times that of transformed cells, although the Km was unchanged.The data indicate that spontaneous transformation of diploid differentiated RL-PR-C hepatocytes leads to cultural hormone receptor and cAMP changes similar to those seen in undifferentiated fibroblasts and other cells transformed by viruses and chemical carcinogens. Although there are significant changes in various parameters of cAMP metabolism upon transformation, decreased cAMP per se does not seem to be responsible for transformation. Furthermore, it is possible that following transformation, these hepatocytes lose some factor necessary for coupling of the glucagon receptor to adenylate cyclase.  相似文献   

2.
The interaction of glucagon with specific receptors has been studied in isolated intact neonatal and adult rat hepatocytes. The hormone binding measured directly with 125I-labelled glucagon was saturable and reversible. The 125I-labelled glucagon binding was inhibited by unlabelled homologous hormone at concentrations ranging from 0.5 nM to 50 μM. Two different binding models were assumed to analyse the binding data by a nonlinear least-squares procedure: (I) a single class of independent sites and (II) two classes of independent sites. The comparison of the fitted theoretical curves reveals that both binding models are in fact compatible with these data. Adult hepatocytes have a considerably higher affinity for glucagon than neonatal hepatocytes; the binding capacity of neonatal liver cells from 1–7-days-old rats proved to be markedly reduced compared with the cells from adult rats. The glucagon-induced intracellular cyclic AMP production was measured at various hormone concentrations under conditions identical to those for the determination of extracellular hormone binding. The correlation of both parameters indicates a direct connection between receptor-occupancy and adenylate cyclase stimulation. These results suggest that a decrease receptor concentration in neonatal hepatocytes is responsible for the decreased cyclic AMP production.  相似文献   

3.
Nα-Trinitrophenyl glucagon was prepared by reaction with trinitrobenzene sulfonic acid and purified by ion-exchange chromatography. This derivative has essentially no ability to activate adenylate cyclase from rat liver nor to increase the levels of cyclic AMP in isolated hepatocytes nor to stimulate protein kinase activity. This derivative also can act as a glucagon antagonist with regard to cyclic AMP production and can decrease the degree of stimulation of adenylate cyclase caused by glucagon, as well as lowering the glucagon-stimulated elevation of cyclic AMP levels in intact hepatocytes. Nevertheless, this derivative is capable of activating glycogenolysis.in isolated hepatocytes and in augmenting the effect of glucagon on glycogenolysis. This metabolic effect of the glucagon derivative thus appears to occur independent of changes in cyclic AMP levels. These results suggest that glucagon can also activate glycogenolysis by a cyclic AMP-independent process.  相似文献   

4.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

5.
Primary monolayer cultures of rat hepatocytes were used for studies of long-term and acute effects of hormones on the cyclic AMP system. When hepatocyte lysates were assayed at various times after plating of the cells three major changes in the metabolism of cyclic AMP and its regulation were observed: Glucagon-sensitive adenylate cyclase activity gradually declined in culture. In contrast, catecholamine-sensitive activity, being very low in normal adult male rat liver and freshly isolated hepatocytes, showed a strong and rapid increase after seeding of the cells. Concomitantly, there was an early elevation (peak approximately equal to 6 h) and a subsequent decrease in activity of both high-Km and low-Km cyclic AMP phosphodiesterase. These enzymic changes probably explained the finding that in intact cultured cells the cyclic AMP response to glucagon was diminished for 2-24 h after seeding, followed by an increase in the responsiveness to glucagon as well as to adrenergic agents up to 48 h of culture. Supplementation of the culture media with dexamethasone and/or insulin influenced the formation and breakdown of cyclic AMP in the hepatocytes. Insulin added at the time of plating moderately increased the adenylate cyclase activity assayed at 48 h, while dexamethasone had no significant effect. In the presence of dexamethasone, insulin exerted a stronger, and dose-dependent (1 pM - 1 microM), elevation of the adenylate cyclase activity in the lysates, particularly of the glucagon responsiveness. Thus, insulin plus dexamethasone counteracted the loss of glucagon-sensitive adenylate cyclase activity occurring in vitro. Kinetic plots of the cyclic AMP phosphodiesterase activity showed three affinity regions for the substrate. Of these, the two with high and intermediate substrate affinity (Km approximately equal to 1 and approximately equal to 10 microM) were decreased in the dexamethasone-treated cells. Insulin partly prevented this effect of dexamethasone. Accumulation of cyclic AMP in intact cells in response to glucagon or beta-adrenergic agents was strongly increased in cultures pretreated with dexamethasone. The results suggest that insulin and glucocorticoids modulate the effects of glucagon and epinephrine on hepatocytes by exerting long-term influences on the cyclic AMP system.  相似文献   

6.
The phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate) causes a dose-dependent inhibition of the glucagon-stimulated adenylate cyclase activity expressed in plasma membranes isolated from TPA-treated hepatocytes. However, no observable inhibitory effect of TPA on adenylate cyclase activity was observed in cells which had been exposed to glucagon for 5 min, prior to isolation, to desensitise adenylate cyclase. The degree of inhibition of adenylate cyclase elicited by both glucagon desensitisation and TPA treatment of hepatocytes was identical. Pre-treatment of hepatocytes with TPA was also found to prevent glucagon from blocking insulin's activation of the peripheral plasma membrane cyclic AMP phosphodiesterase in intact hepatocytes. TPA treatment also inhibited the ability of cholera toxin to activate the peripheral cyclic AMP phosphodiesterase in intact hepatocytes. It is suggested that in these particular instances TPA and glucagon elicit mutually exclusive processes rather than TPA mimicking glucagon desensitisation per se.  相似文献   

7.
Teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early development, we have characterized the alterations that occur in the hormonal responsiveness of the F9 embryonal carcinoma cell membrane adenylate cyclase with differentiation. Adenylate cyclase of F9 cells is stimulated in the presence of 10 μM GTP by calcitonin, prostaglandin E1, (?) isoproterenol, and epinephrine, while parathyroid hormone is only slightly effective. Of these active hormones, calcitonin is the most potent stimulator of cyclic AMP production. Exposure of F9 cells to retinoic acid induces differentiation to parietal endodermal cells. Basal, GTP-, and fluoride-stimulated adenylate cyclase activities show a progressive increase with the retinoic acid-induced change to the endodermal phenotype. Differentiation to the endodermal cell type markedly alters the adenylate cyclase response to calcitonin and parathyroid hormone; the cyclase of endodermal cells exhibits a low response to calcitonin while parathyroid hormone dramatically enhances cyclic AMP formation. Treatment of the retinoic acid-generated endodermal cells with dibutyryl cyclic AMP converts these cells to a type exhibiting neural-like morphology. The adenylate cyclase system of these cells is only stimulated by parathyroid hormone, prostaglandin E1, isoproterenol, and epinephrine. Calcitonin responsiveness has been lost in these cells. These variations in calcitonin and parathyroid hormone responsiveness suggest a possible regulatory role for these hormones during embryonic development. Further more, the results indicate that changes in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of differentiation.  相似文献   

8.
Summary The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3′∶5′-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and highK m forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2). This work was supported by grants from the Medical Research Council of New Zealand and the Medical Research Distribution Committe.  相似文献   

9.
Isolated hepatocytes converted exogenous [α-32P]ATP to cyclic [32P]AMP at high rates. This system was used for kinetic studies of the effects of glucagon, fluoride, free magnesium and free ATP4? on adenylate cyclase. In the absence or presence of glucagon, free Mg2+ activated adenylate cyclase by decreasing the Km for MgATP2? without changing V. Free ATP4? was not a potent inhibitor of adenylate cyclase and the only effect of glucagon was to increase V.Fluoride also increased the V of adenylate cyclase, but, in contrast to the results obtained with glucagon, the effect increased as the concentration of free Mg2+ increased. One explanation of the effect of fluoride, consistent with the idea that free Mg2+ activates adenylate cyclase and free ATP is not an inhibitor, is that fluoride increases the affinity of the enzyme for Mg2+. Weak inhibition of adenylate cyclase by ATP4? in the presence of fluoride cannot be excluded.  相似文献   

10.
Treatment of intact hepatocytes with islet-activating protein, from Bordatella pertussis, led to a pronounced increase in the ability of glucagon to raise intracellular cyclic AMP concentrations. Islet-activating protein, however, caused no apparent increase in the intracellular concentration of cyclic AMP under basal conditions. These effects were attributed to an enhanced ability of adenylate cyclase, in membranes from hepatocytes treated with islet-activating protein, to be stimulated by glucagon. When forskolin was used to amplify the basal adenylate cyclase activity, elevated GTP concentrations were shown to inhibit adenylate cyclase activity in membranes from control hepatocytes. This inhibitory effect of GTP was abolished if the hepatocytes had been pre-treated with islet activating protein. In isolated liver plasma membranes, islet-activating protein caused the NAD-dependent ribosylation of a Mr-40000 protein, the putative inhibitory guanine nucleotide regulatory protein, Ni. This effect was inhibited if guanosine 5'-[beta-thio]diphosphate rather than GTP was present in the ribosylation incubations. The ability of glucagon to uncouple or desensitize the activity of adenylate cyclase in intact hepatocytes was also blocked by pre-treating hepatocytes with islet-activating protein. Islet-activating protein thus heightens the response of hepatocytes to the stimulatory hormone glucagon. It achieves this by both inhibiting the expression of desensitization and also removing a residual inhibitory input expressed in the presence of glucagon.  相似文献   

11.
Nalpha-Trinitrophenyl glucagon was prepared by reaction with trinitrobenzene sulfonic acid and purified by ion-exchange chromatography. This derivative has essentially no ability to activate adenylate cyclase from rat liver nor to increase the levels of cyclic AMP in isolated hepatocytes nor to stimulate protein kinase activity. This derivative also can act as a glucagon antagonist with regard to cyclic AMP production and can decrease the degree of stimulation of adenylate cyclase caused by glucagon, as well as lowering the glucagon-stimulated elevation of cyclic AMP levels in intact hepatocytes. Nevertheless, this derivative is capable of activating glycogenolysis in isolated hepatocytes and in augmenting the effect of glucagon on glycogenolysis. This metabolic effect of the glucagon derivative thus appears to occur independent of changes in cyclic AMP levels. These results suggest that glucagon can also activate glycogenolysis by a cyclic AM-independent process.  相似文献   

12.
—Adenylate cyclase activity of permeabilized neuroblastoma cells was measured by the conversion of [α32P]ATP into labelled cyclic AMP. Adenosine (10?6 - 10?4m ) induced a dose-dependent increase in cyclic AMP formation. This effect could not be accounted for either by an adenosine-induced inhibition of the phosphodiesterase activity present in the enzyme preparation, or by a direct conversion of adenosine into cyclic AMP. This indicates that the observed increase in cyclic AMP accumulation reflected an activation of adenylate cyclase. Adenosine is partially metabolized during the course of incubation with the enzyme preparation. However, none of the identified non-phosphorylated adenosine metabolites were able to induce an adenylate cyclase activation. This suggests that adenosine itself is the stimulatory agent. The apparent Km of the adenylate cyclase for adenosine was 5 ± 10?6-10?5m . Maximal activation represented 3-4 times the basal value (10-100 pmol cyclic AMP formed/10 min/mg protein). The adenosine effect was stereospecific, since structural analogues of adenosine were inactive. Adenosine increased the maximal velocity of the adenylate cyclase reaction. The stimulatory effect of adenosine was inhibited by theophylline. Prostaglandin PGE1 had a stimulatory effect much more pronounced than that of adenosine (6-10-fold the basal value at 10?6m ). Dopamine and norepinephrine induced a slight adenylate cyclase activation which was not potentiated by adenosine. It is concluded that adenosine is able to activate directly neuroblastoma cell adenylate cyclase. It seems very likely that such a direct activation is also present in intact nervous tissue and account, at least partly, for the observed cyclic AMP accumulation in response to adenosine.  相似文献   

13.
14.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

15.
Treatment of intact hepatocytes with glucagon led to the rapid desensitization of adenylate cyclase, which reached a maximum around 5 min after application of glucagon, after which resensitization ensued. Complete resensitization occurred some 20 min after the addition of glucagon. In hepatocytes which had been preincubated with the cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), glucagon elicited a stable desensitized state where resensitization failed to occur even 20 min after exposure of hepatocytes to glucagon. Treatment with IBMX alone did not elicit desensitization. The action of IBMX in stabilizing the glucagon-mediated desensitized state was mimicked by the non-methylxanthine cyclic AMP phosphodiesterase inhibitor Ro-20-1724 [4-(3-butoxy-4-methoxylbenzyl)-2-imidazolidinone]. IBMX inhibited the resensitization process in a dose-dependent fashion with an EC50 (concn. giving 50% of maximal effect) of 26 +/- 5 microM, which was similar to the EC50 value of 22 +/- 6 microM observed for the ability of IBMX to augment the glucagon-stimulated rise in intracellular cyclic AMP concentrations. Pre-treatment of hepatocytes with IBMX did not alter the ability of either angiotensin or the glucagon analogue TH-glucagon, ligands which did not increase intracellular cyclic AMP concentrations, to cause the rapid desensitization and subsequent resensitization of adenylate cyclase. It is suggested that, although desensitization of glucagon-stimulated adenylate cyclase is elicited by a cyclic AMP-independent process, the resensitization of adenylate cyclase can be inhibited by a process which is dependent on elevated cyclic AMP concentrations. This action can be detected by attenuating the degradation of cyclic AMP by using inhibitors of cyclic AMP phosphodiesterase.  相似文献   

16.
Basal activity and hormonal responsiveness of the adenylate cyclase-adenosine 3′,5′-monophosphate system were examined in premalignant liver from rat chronically fed the hepatic carcinogen DL-ethionine, and these data were correlated with endogenous levels of plasma glucagon. By 2 weeks basal hepatic cyclic AMP levels, determined in tissue quick-frozen in situ, were 2-fold higher in rats ingesting ethionine than in the pair-fed control. Enhanced tissue cyclic AMP content was associated with an increase in the adenylate cyclase activity of whole homogenates of fresh liver from rats fed ethionine (68 ± 5 pmol cyclic AMP/10 min per mg protein) compared to control (48 ± 4). Cyclic AMP-dependent protein kinase activity ratios were also significantly higher (control, 0.38 ± 0.04; ethionine 0.55 ± 0.05) and the percent glycogen synthetase activity in the glucose 6-phosphate-independent form was markedly reduced (control, 52 ± 7%; ethionine, 15 ± 1.5 %) in the livers of ethionine-fed rats compared to the controls, suggesting that the high total hepatic cyclic AMP which accompanied ethione ingestion was biologically effective. These changes persisted throughout the 38 weeks of drug ingestion. Immunoreactive glucagon levels, determined in portal venous plasma, were 8-fold higher than control after 2 weeks of the ethionine diet (contro, 185 ± 24 pg/ml; ethionine, 1532 ± 195). Analogous to the changes in hepatic parameters, plasma glucagon levels remained elevated during the entire period of drug ingestion until the development of hepatomas. The hepatic cyclic AMP response to a maximal stimulatory dose of injected glucagon was blunted in vivo in ethionine-fed rats (control, 14-fold increase over basal, to 8.63 ± 1.1 pmol/mg wet weight; ethionine, 4.6-fold rise over basal, to 5.42 ± 0.9). Reduced cyclic AMP responses to both maximal and submaximal glucagon stimulation were also evident in vitro in hepatic slices prepared from rats fed the drug, and the reduction was specific to glucagon. Absolute or relative hepatic cyclic AMP responses to maximally effective concentrations of prostaglandin E1 or isoproterenol in hepatic slices from ethionine-fed rats were greater than or equal to those observed in control slices. Parallel alterations in hormonal responsiveness were observed in adenylate cyclase activity of whole homogenates of these livers, implying that the changes in cyclic AMP accumulation following hormone stimulation were related to an alteration in cyclic AMP generation in the premalignant tissue.In view of the recognized hepatic actions of glucagon and the desensitization of adenylate cyclase which can occur during sustained stimulation of the liver with this hormone, the endogenous hyperglucagonemia that accompanies ethionine ingestion could play a role in the pathogenesis of both the basal alterations in hepatic cyclic AMP metabolism and the reduced responsiveness to glucagon observed in liver from rats fed this carcinogen.  相似文献   

17.
Treatment of intact hepatocytes with glucagon, TH-glucagon [( 1-N-alpha-trinitrophenylhistidine, 12-homoarginine]glucagon), angiotensin or vasopressin led to a rapid time- and dose-dependent loss of the glucagon-stimulated response of the adenylate cyclase activity seen in membrane fractions isolated from these cells. Intracellular cyclic AMP concentrations were only elevated with glucagon. All ligands were capable of causing both desensitization/loss of glucagon-stimulated adenylate cyclase activity and stimulation of inositol phospholipid metabolism in the intact hepatocytes. Maximally effective doses of angiotensin precluded any further inhibition/desensitizing action when either glucagon or TH-glucagon was subsequently added to these intact cells, as has been shown previously for the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate) [Heyworth, Wilson, Gawler & Houslay (1985) FEBS Lett. 187, 196-200]. Treatment of intact hepatocytes with these various ligands caused a selective loss of the glucagon-stimulated adenylate cyclase activity in a washed membrane fraction and did not alter the basal, GTP-, NaF- and forskolin-stimulated responses. Angiotensin failed to inhibit glucagon-stimulated adenylate cyclase activity when added directly to a washed membrane fraction from control cells. Glucagon GR2 receptor-stimulated adenylate cyclase is suggested to undergo desensitization/uncoupling through a cyclic AMP-independent process, which involves the stimulation of inositol phospholipid metabolism by glucagon acting through GR1 receptors. This action can be mimicked by other hormones which act on the liver to stimulate inositol phospholipid metabolism. As the phorbol ester TPA also mimics this process, it is proposed that protein kinase C activation plays a pivotal role in the molecular mechanism of desensitization of glucagon-stimulated adenylate cyclase. The site of the lesion in desensitization is shown to be at the level of coupling between the glucagon receptor and the stimulatory guanine nucleotide regulatory protein Gs, and it is suggested that one or both of these components may provide a target for phosphorylation by protein kinase C.  相似文献   

18.
A potential regulatory role for the cyclic nucleotides during liver morphogenesis will be better understood as the development of various components of the cyclic nucleotide system are characterized. Accordingly, adenylate cyclase response to glucagon and 5′-guanylimidodiphosphate (Gpp(NH)p) and the specific activities, cellular distributions, and kinetic constants (V and Km) of the cyclic AMP and cyclic GMP phosphodiesterases were determined at variuos stages of rat liver development. These results show (1) a period of increasing sensitivity of rat liver adenylate cyclase to glucagon at a time when sensitivity to NaF and Gpp(NH)p remains unchanged, and (2) increased responsiveness to glucagon plus Gpp(NH)p which is dependent upon the degree of glucagon sensitivity. It is concluded that the guanul nucleotide regulatory site is a functional part of adenylate cyclase very early in liver development and that the development of glucagon sensitivity is more probably limited by the developmet of glucagon receptors. Two forms of each phosphodiesterase (high and low Km) were found throughout, except that low Km cyclic GMP phosphodiesterase could not be demonstrated in the embryo. No significant change with age was found for the Km or V of any of the enzyme forms. The ratio of soluble: particulate cyclic AMP phosphodiesterase decreased with age, whereas no change in the ration for cyclic GMP phosphodiesterase was observed. Specific activities of each enzyme from were highest in the perinatal period and decreased with age. The changes in phosphodiesterase specific activities paralled changes in guanylate and adenylate cyclase activities, which argues against a selective regulatory role for phosphodiesterase in modulating cyclic nucleotide influences during liver morphogenesis.  相似文献   

19.
J C Redshaw 《In vitro》1980,16(5):377-383
The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3':5'-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and high Km forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2).  相似文献   

20.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331-336) and this heterologous beta-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous beta-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号