首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acetylcholine receptor of Torpedo electroplax is purified by affinity adsorption using cobra toxin (Naja naja siamensis) covalently attached to Sepharose 4B. Desorption by 10 mm benzoquinonium produces a protein that binds α-[125I]bungarotoxin but not [3H]acetylcholine or other reversible cholinergic ligands. On the other hand, desorption by 1 m carbamylcholine produces an acetylcholine receptor protein that binds [3H]acetylcholine, [3H]decamethonium, [3H]nicotine, [14C]dimethyl-d-tubocurarine, and α-[125I]bungarotoxin. The batch method of affinity adsorption employed gives recoveries of acetylcholine receptor (as measured by acetylcholine binding) averaging 69.2 ± 14.6%. The purity of the isolated acetylcholine receptor protein is estimated to be at best 87% as judged by disc gel electrophoresis and electrofocusing.The purified acetylcholine receptor binds 7.8 nmoles acetylcholine/mg protein based on estimation of protein concentration by a spectrophotometric method. Of these, 2.7 nmoles exhibit high affinity (KD = 0.02 μM) and 5.1 nmoles a lower affinity (KD = 1.97 μM. If the protein concentration used is that obtained by amino acid analysis, the total specific activity would be 10.4 nmoles acetylcholine bound per milligram protein. The subunit carrying one acetylcholine binding site is estimated to range between 83,000 and 112,000 daltons. In contrast to the membrane-bound or Lubrol-solubilized acetylcholine receptor, the purified acetylcholine receptor shows no autoinhibition with acetylcholine concentrations up to 10 μm. Binding of acetylcholine was totally inhibited by α-bungarotoxin or cobra toxin and was partially blocked by four nicotinic drugs, but not by two muscarinic ones. The amino acids of the acetylcholine receptor are analyzed and compared to those of acetylcholinesterase.  相似文献   

2.
Abstract: KCI (20–100 mM) and W-methyl-D-aspartate (NMDA, 100–1,000 μM) produce concomitant concentration-dependent increases in the release of previously captured [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The effects of NMDA (300μM) on striatal [14C]acetylcholine and [3H]spermidine release were blocked with equal potencies by the competitive NMDA antagonist CGP 37849, the glycine site antagonist L-689,560, and the NMDA channel blocker dizocilpine. In contrast, although NMDA-evoked [14C]acetylcholine release was antagonized by ifenprodil (IC50= 5.3 μM) and MgCl2, (IC50= 200 μM), neither compound antagonized the NMDA-evoked release of [3H]spermidine at concentrations up to 100 μM (ifenprodil) or 1 mM (MgCl2). Distinct NMDA receptor subtypes with different sensitivities to magnesium and ifenprodil therefore exist in the rat striaturn.  相似文献   

3.
A number of presynaptic cholinergic parameters (high affinity [3H]choline uptake, [3H]acetylcholine synthesis, [3H]acetylcholine release, and autoinhibition of [3H]acetylcholine release mediated by muscarinic autoreceptors) were comparatively analyzed in rat brain cortex synaptosomes during postnatal development. These various functions showed a differential time course during development. At 10 days of age the release of [3H]acetylcholine evoked by 15 mM KCl from superfused synaptosomes was Ca2+-dependent but insensitive to the inhibitory action of extrasynaptosomal acetylcholine. The muscarinic autoreceptors regulating acetylcholine release were clearly detectable only at 14 days, indicating that their appearance may represent a criterion of synaptic maturation more valuable than the onset of a Ca2+-dependent release.  相似文献   

4.
Acetylcholine receptor-rich membranes from Torpedocalifornica contain a binding site for [14C] pentobarbital which has a dissociation constant of 210 ± 24 μM and 1.4 ± 0.18 sites per acetylcholine site. (+) pentobarbital competes for this site three times more effectively than (?) pentobarbital. Cholinergic ligands decrease [14C] pentobarbital binding and this effect is blocked by pre-incubation with α-bungarotoxin. Pentobarbital decreases [3H] acetylcholine binding non-competitively with an apparent dissociation constant similar to the dissociation constant for [14C] pentobarbital binding. Thus, the pentobarbital and acetylcholine binding sites appear to interact with each other allosterically.  相似文献   

5.
Abstract

Electrophysiological studies from this and other laboratories have suggested a direct action of ATP on nicotinic acetylcholine receptors (nAChR). To determine the site of binding of this purine derivative, we have covalently modified the nAChR from Torpedo marmorata electrocytes employing 2-[3H]-8-azido-ATP as a photoactivable affinity label. Covalently attached radioactivity was predominantly found in the β-polypeptide of the receptor. Based on the results of protection studies with several nAChR ligands whose target sites at the receptor are known, we conclude that the purine site(s) differ from those of acetylcholine and of physostigmine, galanthamine and related ligands, and those of local anesthetics.  相似文献   

6.
The effects of 5-HT and glutamate on dopamine synthesis and release by striatal synaptosomes were investigated and compared with the action of acetylcholine, which acts presynaptically on this system. 5-HT inhibited (28%) synthesis of [14C]dopamine from L-[U-14C]tyrosine, at 10-5M and above. This contrasts with the action of acetylcholine, which stimulated [14C]-dopamine synthesis by 24% at 10-4 M. Tissue levels of GABA were unaffected by either 5-HT or acetylcholine up to concentrations of 10-4 M. The inhibitory action of 5-HT (5 × 10?5 M and 2 × 10?4 M) on [19C]dopamine synthesis was completely abolished by methysergide (2 × 10?6 M). Higher concentrations of methysergide (10?4 M) or cyproheptadine (10?5 M) inhibited [14C]dopamine synthesis by 28% and 25%, respectively, when added alone to synaptosomes. However, only methysergide prevented the further inhibition of synthesis caused by 5-HT. At concentrations of 2 × 10?5 M and above, 5-HT stimulated [14C]dopamine release. This releasing action differed from that of acetylcholine, which occurred at lower concentrations (e.g., 10?6 M). Methysergide (up to 10?4 M) or cyproheptadine (2 × 10?4 M) did not reduce the 5-HT (5 × 10?5 M)-induced release of [14C]dopamine, but methysergide (10?4 M) showed a potentiation (49%) of this increased release. The stimulatory effects of 5-HT (2 × 10?5 M) and K+ (56 mM) on [14C]dopamine release were additive, indicating that two separate mechanisms were involved. However, when both agents were present the stimulatory effect of K+ (56 mM) on [14C]dopamine synthesis was not seen above the inhibitory effect of 5-HT. Glutamate (0.1-5 mM) did not affect [4C]dopamine release or its synthesis from L-[U-14C]tyrosine. It is concluded that 5-HT modulates the synthesis of dopamine in striatal nerve terminals through a presynaptic receptor mechanism, an action antagonised by methysergide. The releasing action of 5-HT apparently occurs through a separate mechanism which is also distinct from that involved in the response to K+ depolarisation.  相似文献   

7.
An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10–3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95–98% of both choline and acetylcholine. Of the bound choline 84–87% was eluted in 1.5 ml of 0.075 n HCl, whereas 95–98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 n HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [γ-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10–3000 pmol) and choline (30–3000 pmol) standards. The “limit sensitivity” was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.  相似文献   

8.
AimsHippocampal cholinergic hypofunction is known to be involved in the cognitive deficits of Alzheimer's disease, but the detailed mechanisms remain to be elucidated. In order to establish an in vitro hippocampal cholinergic neuronal model for the relevant mechanistic studies, we have characterized a widely used hippocampal neuronal cell line, HT22, a sub-line derived from parent HT4 cells that were originally immortalized from primary mouse hippocampal neuronal culture.Main methodsWestern blot and immunocytochemistry were used to examine expression of cholinergic markers in HT22 cells. High potassium-evoked [3H]ACh release was used to evaluate the cholinergic functional properties of the cells.Key findingsWe found that HT22 cells express essential cholinergic markers, such as the high affinity choline transporter, choline acetyltransferase, vesicular acetylcholine transporter, and muscarinic acetylcholine receptors. Exposure of HT22 cells to high potassium evoked [3H]ACh release in a dose-dependent manner. In addition, the [3H]ACh release was significantly potentiated when presynaptic autoreceptors were blocked.SignificanceOur results suggest that HT22 cells possess functional cholinergic properties, and can be used for an in vitro model for defining the mechanisms in cognitive deficits of Alzheimer's disease.  相似文献   

9.
Differential assay for choline acetyltransferase   总被引:7,自引:0,他引:7  
A rapid and sensitive radiochemical assay for choline acetyltransferase (EC 2.3.1.6) is reported. The assay allows for the fact that during incubation of [14C]acetyl-CoA and choline with a cell homogenate, at least one product is formed besides [14C]acetylcholine, which passes an anion exchange column. In contrast to [14C]acetylcholine, this major contaminant ([14C]acetylcarnitine) is not hydrolyzed apparently by Electrophorus acetylcholinesterase. Therefore, two types of assays are performed, the one in the presence of an acetylcholinesterase inhibitor, the other in the presence of acetylcholinesterase from Electrophorus. After passing the reaction mixtures over anion exchange columns, the radioactivities of the effluents are determined. Their difference is proportional to the choline acetyltransferase activity.  相似文献   

10.
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography.  相似文献   

11.
A glucose receptor with high affinity for phlorizin from isolated brush border of rat kidney was labelled specifically withN-[14C]ethylmaleimide and then extracted from the membranes.After the solubilization of the brush borders with sodium dodecyl sulphate theN-[14C]ethylmaleimide-labelled receptor protein was isolated and was found to have a molecular weight of approximately 30 000 as determined by sodium dodecyl sulphate-polyacrylamide gel disc electrophoresis. The receptor protein eluted from the sodium dodecyl sulphate-containing gels migrates as a single band on sodium dodecyl sulphate-free polyacrylamide gels.The receptor protein can also be released from the brush borders with low concentrations of sodium deoxycholate. Under these conditions the molecular weight of theN-[14C]ethylmaleimide-labelled receptor protein is approximately 60 000 in contrast to the protein component solubilized with sodium dodecyl sulphate. Since this detergent is known to dissociate the brush border membrane into its protein components, our results suggest that the phlorizin- sensitive glucose receptor protein has a molecular weight of about 30 000.  相似文献   

12.
Abstract

The binding characteristics of [3H]quinuclidinyl benzilate ([3H]QNB) to isolated crude membranes of cultured bovine aortic endothelial cells were investigated. [3H]QNB bound to endothelial cell membranes with high affinity (kD = 0.056 nM) and limited capacity (132 fmol/mg DNA). The binding specificity, order of affinity and inhibition constants (Ki) were determined by displacement of bound [3H]QNB with unlabeled ligands. The order of affinity was QNB > atropine > 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) > p-fluoro-hexahydro-sila-difenidol (p-F-HHSiD) (M3 antagonist) > pirenzepine (M1 antagonist) > AFDX-116 (M2 antagonist) > (4-hydroxy-2-butynyl) trimethylammonium chloride m-chlorocarbanilate (McN-A-343, M1 agonist). These observations suggest that muscarinic receptors of endothelial cells in culture are likely to be of M3 and M1 subtype. Northern blot analysis of receptor subtypes using cDNA probes did not provide conclusive results due to the low level expression of these receptors in cultured cells. Solubilization of protein bound [3H]QNB with 1% digitonin and 0.02% cholate followed by analysis on sucrose density gradients demonstrated the presence of a specifically bound [3H]QNB-protein complex sedimenting at the 6.2S region of the gradient. These data demonstrate the presence of muscarinic acetylcholine receptor protein in cultured bovine aortic endothelial cells.  相似文献   

13.
Abstract

Analysis of (-)[125]iodo-N6-(4-hydroxyphenylisopropyl)-adenosine ([125I]HPIA) binding to purified sarcolemmal preparations of guinea pig and bovine hearts revealed two classes of binding sites when unlabeled iodo-HPIA (100 μmol/1) was used as non-specific binding marker. In the presence of 1 mmol/1 theophylline, however, only the high affinity component was detected. Adenosine receptor agonists caused biphasic displacement of [125I]HPIA binding, with a high affinity potency rank order typical of interaction with A1-adenosine receptors. Biphasic competition curves were also observed with 8-phenyltheophylline and isobutylmethylxanthine, whereas the theophylline curve was monophasic up to 1 mmol/1. In brain membranes, specific binding of [125I]HPIA as well as of [3H]PIA was further reduced when unlabeled iodo-HPIA replaces theophylline as the non-specific binding marker. These results suggest the presence of two [125I]HPIA binding sites on cardiac sarcolemma and brain membranes, but receptor function can only be ascribed to the high affinity sites. The low affinity site probably represents an artefact, which is often observed when non-specific binding is defined with the unlabeled counterpart or a structurally related ligand of the radioligand used.  相似文献   

14.
Abstract— The effects of thiamine deprivation and of treatment with the thiamine antagonists, oxythiamine and pyrithiamine, on the storage and synthesis of acetylcholine were studied in rats. Rats treated with pyrithiamine always developed ataxia and convulsions, and they died in an average of 36 ± 5.0 hr after onset of convulsions. Injections of sublethal doses of eserine after onset of convulsions had no effect or shortened survival time. If injections were started before the onset of convulsions, the survival time was increased to 56 ± 3.3 hr. The content of total acetylcholine-like compounds, measured by bioassay, in the brain was decreased in all three types of thiamine deficiency. On the other hand, the amount of parenterally administered [14C]pyruvate converted to [14C]acetylcholine in vivo was affected only by treatment with pyrithiamine. The increase found was probably due to an increased permeability of the blood-brain barrier to the pyruvate. Conversion of [14C]pyruvate to [14C]acetylcholine in vitro was decreased significantly in homogenates of brains from both oxythiamine and pyrithiamine-treated animals.  相似文献   

15.
Abstract

The binding characteristics of radiolabeled N6-(cyclohexyl)adenosine ([3H]CHA), N6-(R-phenylisopropyl)adenosine ([3H]R-PIA), 5′-N-ethylcarboxamidoadenosine ([3H]NECA), and 2-[4-(2-carboxyethyl)phenyl]ethyl-amino-5′-N-ethylcarboxamidoadenosine ([3H]CGS 21680), to rat testis membranes were investigated. Specific binding of [3H]CGS 21680, a selective agonist for the A2a adenosine receptor, was very modest whilst the nonselective agonist [3H]NECA bound to rat testis membranes showing high binding capacity. At least two types of binding sites for [3H]NECA could be identified in rat testis membranes: high affinity sites and high capacity sites. Selective agonists for the At adenosine receptor, [3H]CHA and [3H]R-PIA bound with high affinity to a single class of binding sites. This high affinity binding site showed the typical pharmacological specificity of the A1 adenosine receptor with a potency order for agonists of CHA R-PIA > NECA > N6-(S-phenylisopropyl)adenosine (S-PIA). In order to detect the presence of the A3 adenosine receptor in these membranes we selectively blocked the A1 receptor with a large molar excess of a xanthine antagonist, either 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) or xanthine amine congener (XAC). In the presence of an antagonist a low affinity binding site for [3H]CHA and [3H]R-PIA was detected. This low affinity binding site showed a different pharmacological specificity than the high affinity binding site. In fact the potency order for agonists was CHA NECA = R-PIA > S-PIA. This finding suggests that the low affinity binding site represents the A3 adenosine receptor.  相似文献   

16.
Acetyl-l-carnitine as a precursor of acetylcholine   总被引:2,自引:0,他引:2  
Synthesis of [3H]acetylcholine from [3H]acetyl-l-carnitine was demonstrated in vitro by coupling the enzyme systems choline acetyltransferase and carnitine acetyltransferase. Likewise, both [3H] and [14C] labeled acetylcholine were produced when [3H]acetyl-l-carnitine andd-[U-14C] glucose were incubated with synaptosomal membrane preparations from rat brain. Transfer of the acetyl moiety from acetyl-l-carnitine to acetylcholine was dependent on concentration of acetyl-l-carnitine and required the presence of coenzyme A, which is normally produced as an inhibitory product of choline acetyltransferase. These results provide further evidence for a role of mitochondrial carnitine acetyltransferase in facilitating transfer of acetyl groups across mitochondrial membranes, thus regulating the availability in the cytoplasm of acetyl-CoA, a substrate of choline acetyltransferase. They are also consistent with a possible utility of acetyl-l-carnitine in the treatment of age-related cholinergic deficits.  相似文献   

17.
Tor 23 is a monoclonal antibody, generated against cholinergic terminals of theTorpedo californica, that has been found to bind to the extracellular surface of cholinergic neurons in a variety of tissues. This study shows that Tor 23 inhibits: 1) high affinity [3H]hemicholinium-3 binding to detergent-solubilized membranes prepared from rat neocortices; 2) high affinity [3H]choline uptake in rat neocortical and striatal P2 preparations; and 3) [3H]acetylcholine synthesis in isolated nerve terminals. Tor 23 does not appear to affect low affinity [3H]choline uptake or [3H]acetylcholine release. These results are consistent with the hypothesis that Tor 23 may bind to nerve terminal high affinity choline transporters in the rat brain.  相似文献   

18.
Abstract

Amiloride and its analogues displace the adenosine A, receptor ligands [3H]CPDPX and [3H]PIA from their binding sites in calf brain membranes in a GTP-insensitive manner. High [NaCl] or low pH reduces the affinity of amiloride for A, receptors, whereas the affinity of [3H]CPDPX is not affected. Notwithstanding this difference in modulation, the interaction between amiloride and A, receptors appears competitive in nature. The structure-affinity relationships differ from those for classic amiloride-sensitive Na' transport systems, indicating that a coupling between the A, receptor and one of these systems is very unlikely. Amiloride and its analogues may reprcsent a novel class of A, receptor antagonists.  相似文献   

19.
Dopamine (DA) D2 receptor-mediated inhibition of the K+-stimulated release of [14C]acetylcholine (ACh) from prelabeled rat dorsomedial nucleus accumbens slices was found to be 1.7 times greater than that observed in dorsorostral and ventromedial slices. This observation is consistent with the 1.9 fold higher DA D2 receptor density found in the dorsomedial area. In contrast, there were no differences in the DA D2 receptor-mediated effects on [3H]DA release in these areas. In addition, DA D2 receptor-mediated effects on [3H]DA and [14C]ACh release could not be demonstrated in the ventrorostral part of the nucleus accumbens consistent with the fact that DA D2 receptors were barely detectable in this area. The results suggest that cholinergic terminals in the dorsomedial part of the nucleus accumbens are under greater inhibitory DA control than in other areas of the nucleus accumbens.  相似文献   

20.
The regulation of ligand binding to the muscarinic acetylcholine receptor in developing chick heart has been studied using the radiolabeled antagonist [3H]quinuclidinyl benzilate (QNB). In assays containing only buffer and a source of receptor protein, the antagonist radioligand bound to a single, high affinity state of the receptor. If Mg2+ and EDTA were added, [3H]QNB bound to a single, low affinity state. The guanine nucleotide analog, guanylylimidodiphosphate [Gpp(NH)p], reversed the effect of Mg2+EDTA so that [3H]QNB again bound only to a single, high affinity state. Sodium could also reverse the effect of Mg2+EDTA on antagonist binding but the effects of sodium and Gpp(NH)p on [3H]QNB binding were not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号