首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Auto-proteolysis at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is a hallmark of adhesion-GPCRs. Although defects in GPS auto-proteolysis have been linked to genetic disorders, information on its regulation remains elusive. Here, we investigated the GPS proteolysis of CD97, a human leukocyte-restricted and tumor-associated adhesion-GPCR. We found that CD97 is incompletely processed, unlike its close homolog, epidermal growth factor-like module-containing mucin-like hormone receptor 2. A unique pattern of N-glycosylation within the GPS motif of related adhesion-GPCRs was identified. The use of N-glycosylation inhibitors and mutants confirm site-specific N-glycosylation is an important determinant of GPS proteolysis in CD97. Our results suggest that N-glycosylation may regulate the processing of adhesion-GPCRs leading to the production of either cleaved or uncleaved molecules.  相似文献   

2.
Nck-interacting kinase-like embryo-specific kinase (NESK) is a protein kinase that is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. NESK belongs to the germinal center kinase (GCK) family and selectively activates the c-Jun N-terminal kinase (JNK) pathway when overexpressed in cultured cells. Some members of the GCK family have been shown to be proteolytically cleaved and activated during apoptosis. Here, we report that NESK is also proteolytically cleaved during apoptosis. Treatment of NESK-transfected HeLa cells with TNF-alpha in the presence of cycloheximide or with staurosporine induced proteolytic cleavage of NESK. The cleavage of NESK occurred at two sites, generating three fragments: an N-terminal fragment containing a kinase domain, an intermediate fragment and a C-terminal fragment containing a regulatory CNH domain. These two cleavages occurred in a stepwise manner and were dependent on a caspase activity. The cleavage sites were identified as aspartic acid residues at 868 and 1091. The N-terminal fragment had less kinase activity than the full-length NESK and did not activate the JNK pathway. In contrast, the C-terminal fragment activated the JNK pathway more strongly than the full-length NESK and promoted TNF-alpha-induced apoptotic cell death. These results implicate NESK in the JNK pathway-mediated promotion of apoptosis through its C-terminal regulatory domain generated by proteolytic cleavage during apoptosis, in a unique manner different from other GCK family kinases.  相似文献   

3.
The calcium-independent receptor of alpha-latrotoxin (CIRL), a neuronal cell surface receptor implicated in the regulation of exocytosis, is a natural chimera of the cell adhesion protein and the G protein-coupled receptor (GPCR). In contrast with canonic GPCRs, CIRL consists of two heterologous non-covalently bound subunits, p120 and p85, due to endogenous proteolytic processing of the receptor precursor in the endoplasmic reticulum. Extracellularly oriented p120 contains hydrophilic cell adhesion domains, whereas p85 resembles a generic GPCR. We determined that the site of the CIRL cleavage is located within a juxtamembrane Cys- and Trp-rich domain of the N-terminal extracellular region of CIRL. Mutations in this domain make CIRL resistant to the cleavage and impair its trafficking. Therefore, we have named it GPS for G protein-coupled receptor proteolysis site. The GPS motif is found in homologous adhesion GPCRs and thus defines a novel receptor family. We postulate that the proteolytic processing and two-subunit structure is a common characteristic feature in the family of GPS-containing adhesion GPCRs.  相似文献   

4.
5.
Extracellular superoxide dismutase (EC-SOD) is the only known extracellular enzyme designed to scavenge the superoxide anion. The purified enzyme exists in two forms when visualized by reduced SDS-polyacrylamide gel electrophoresis: (i) intact EC-SOD (Trp1-Ala222) containing the C-terminal heparin-binding domain and (ii) cleaved EC-SOD (Trp1-Glu209) without the C-terminal heparin-binding domain. The proteolytic event(s) leading to proteolysis at Glu209-Arg210 and removal of the heparin-binding domain are not known, but may represent an important regulatory mechanism. Removal of the heparin-binding domain affects both the affinity of EC-SOD for and its distribution to the extracellular matrix, in which it is secreted. During the purification of human EC-SOD, the intact/cleaved ratio remains constant, suggesting that proteolytic removal of the heparin-binding domain does not occur during purification (Oury, T. D., Crapo, J. D., Valnickova, Z., and Enghild, J. J. (1996) Biochem. J. 317, 51-57). This was supported by the finding that fresh mouse tissue contains both intact and cleaved EC-SOD. To study other possible mechanisms leading to the formation of cleaved EC-SOD, we examined biosynthesis in cultured rat L2 epithelial-like cells using a pulse-chase protocol. The results of these studies suggest that the heparin-binding domain is removed intracellularly just prior to secretion. In addition, the intact/cleaved EC-SOD ratio appears to be tissue-dependent, implying that the intracellular processing event is regulated in a tissue-specific manner. The existence of this intracellular processing pathway may thus represent a novel regulatory pathway for affecting the distribution and effect of EC-SOD.  相似文献   

6.
Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis.  相似文献   

7.
G protein-coupled receptors (GPCRs) are involved in cell recognition and signaling and their function has been experimentally determined by ligand activation and site-directed mutagenesis. Structurally, GPCRs consist of an extracellular N-terminus and an intracellular C-terminus separated by seven helical transmembrane domains (TM7). The extracellular region is highly glycosylated. The intracellular region binds to G proteins. An epididymal GPCR, designated HE6 (for human epididymis-specific protein 6), is present in the stereocilia projecting from the apical domain of principal cells into the epididymal lumen. In conceptual terms, HE6 wears two hats: an unusually long extracellular region characteristic of cell adhesion proteins, and an intracellular region with binding affinity to G protein. The binding partner to the long extracellular region has not been identified. HE6 has another remarkable feature comparable to the GPCR calcium-independent receptor of alpha-latrotoxin, designated CIRL. Both HE6 and CIRL are endogenously cleaved into two pieces at the GPCR proteolytic site (GPS) located adjacent to TM1, the first of the seven transmembrane helices. One fragment of the heterodimer wears the cell adhesion hat; the other retains the typical characteristics of GPCRs. This proteolytic processing may be regarded as a mechanism of molecular compartmentalization of cell adhesion and G protein activation functions. The latter may engage a beta-arrestin-driven endocytic trafficking mechanism independent from the adhesive properties of the mucin extracellular domain. It is also conceivable that events taking place in the epididymal lumen can be surveyed by the long adhesive rod and subsequently coupled inside principal cells to a signaling cascade.  相似文献   

8.
9.
The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.  相似文献   

10.
Human immunodeficiency virus type 2 (HIV-2) Nef is proteolytically cleaved by the HIV-2-encoded protease. The proteolysis is not influenced by the absence or presence of the N-terminal myristoylation. The main cleavage site is located between residues 39 and 40, suggesting a protease recognition sequence, GGEY-SQFQ. As observed previously for Nef protein from HIV-1, a large, stable core domain with an apparent molecular mass of 30 kDa is produced by the proteolytic activity. Cleavage of Nef from HIV-1 in two domains by its own protease or the protease from HIV-2 is also independent of Nef myristoylation. However, processing of HIV-1 Nef by the HIV-2 protease is less selective than that by the HIV-1 protease: the obtained core fragment is heterogeneous at its N terminus and has an additional cleavage site between amino acids 99 and 100. Preliminary experiments suggest that the full-length Nef of HIV-2 and the core domain are part of the HIV-2 particles, analogous to the situation reported recently for HIV-1.  相似文献   

11.
Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu downward arrow Ser(518) cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P(+1) cleavage site (Ser(518)) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P(-2) His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cell-free system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cis-proteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases.  相似文献   

12.
The C-terminal half of the replicase ORF1a polyprotein of the arterivirus equine arteritis virus is processed by a chymotrypsinlike serine protease (SP) (E. J. Snijder et al., J. Biol. Chem. 271:4864-4871, 1996) located in nonstructural protein 4 (nsp4). Three probable SP cleavage sites had previously been identified in the ORF1a protein. Their proteolysis explained the main processing products generated from the C-terminal part of the ORF1a protein in infected cells (E. J. Snijder et al., J. Virol. 68:5755-5764, 1994). By using sequence comparison, ORF1a expression systems, and site-directed mutagenesis, we have now identified two additional SP cleavage sites: Glu-1430 / Gly and Glu-1452 / Ser. This means that the ORF1a protein can be cleaved into eight processing end products: nsp1 to nsp8. By microsequence analysis of the nsp5 and nsp7 N termini, we have now formally confirmed the specificity of the SP for Glu / (Gly/Ser) substrates. Importantly, our studies revealed that the C-terminal half of the ORF1a protein (nsp3-8) can be processed by the SP following two alternative pathways, which appear to be mutually exclusive. In the majority of the nsp3-8 precursors the SP cleaves the nsp4/5 site, yielding nsp3-4 and nsp5-8. Subsequently, the latter product is cleaved at the nsp7/8 site only, whereas the newly identified nsp5/6 and nsp6/7 sites appear to be inaccessible to the protease. In the alternative proteolytic cascade, which is used at a low but significant level in infected cells, it is the nsp4/5 site which remains uncleaved, while the nsp5/6 and nsp6/7 sites are processed to yield a set of previously unnoticed processing products. Coexpression studies revealed that nsp3-8 has to interact with cleaved nsp2 to allow processing of the nsp4/5 junction, the first step of the major processing pathway. When the nsp2 cofactor is absent, the nsp4/5 site cannot be processed and nsp3-8 is processed following the alternative, minor pathway.  相似文献   

13.
The human interleukin-2 (IL-2) receptor was quantitatively cleaved into two large disulfide-bonded fragments by either trypsin or endoproteinase lys-C (endo lys-C). The smaller fragment contains both N-linked oligosaccharides found in the intact receptor and is derived from the amino terminus of the molecule. The larger proteolytic fragment was metabolically labeled with 32PO4 and represents the carboxy terminus. The predicted cleavage sites of both enzymes lie in the region of the molecule encoded by exon 3. This pattern of limited proteolysis provides biochemical evidence that the extracellular region of the receptor is organized into two domains. This supports a structural model of the receptor in which the regions of internal homology encoded by exons 2 and 4 form independent disulfide-bonded domains connected by a hydrophilic segment. To determine the role of these domains in IL-2 binding, [125I]IL-2 was chemically cross-linked to the proteolytically cleaved receptor on the cell surface. The 125I-labeled complex obtained displayed N-linked oligosaccharides and had an Mr consistent with one molecule of IL-2 cross-linked to the smaller proteolytic fragment of the receptor. Thus, the amino-terminal domain of the IL-2 receptor appears to form an integral part of the IL-2 binding site.  相似文献   

14.
Bilateral frontoparietal polymicrogyria (BFPP) is a rare genetic disease characterized by cortical malformation associated with GPR56 mutations of frameshift, splicing, and point mutations (Science 303:2033). All the missense point mutations are located in the regions predicted to be exposed at the cell surface, e.g. the N-terminal extracellular domain (ECD), the proteolytic site (GPS), and the extracellular loops of transmembrane domain (TM), implying functionally important interaction among these domains. Wild type GPR56 protein is cleaved at the GPCR protein cleavage site (GPS) and gives rise to two subunits (ECD and TM), which are transported to cell surface. We have shown that GPR56 GPS mutant protein is defective in cleavage and surface localization, while non-GPS mutant proteins are cleaved normally but still defective in surface localization. Furthermore, all the mutant proteins demonstrated different glycosylation pattern from that of wild-type protein. PNGase F and Endo H sensitivity assays suggests that the mutant proteins are trapped in endoplasmic reticulum (ER), preventing them from trafficking to Golgi where further glycosylation modification usually occurs before destination to cell surface. Therefore, the loss-of-function of all these missense mutations is primarily caused by their failure to localize to cell surface.  相似文献   

15.
Cajal bodies (CB) are subnuclear domains that contain various proteins with diverse functions including the CB marker protein coilin. In this study, we investigate the proteolytic activity of calpain on coilin. Here, we report a 28-kDa cleaved coilin fragment detected by two coilin antibodies that is cell cycle regulated, with levels that are consistently reduced during mitosis. We further show that an in vitro calpain assay with full-length or C-terminal coilin recombinant protein releases the same size cleaved fragment. Furthermore, addition of exogenous RNA to purified coilin induces proteolysis by calpain. We also report that the relative levels of this cleaved coilin fragment are susceptible to changes induced by various cell stressors, and that coilin localization is affected by inhibition or knockdown of calpain both under normal and stressed conditions. Collectively, our data suggest that coilin is subjected to regulated specific proteolysis by calpain, and this processing may play a role in the regulation of coilin activity and CB formation.  相似文献   

16.
Trypsin is shown to generate an insecticidal toxin from the 130-kDa protoxin of Bacillus thuringiensis subsp. kurstaki HD-73 by an unusual proteolytic process. Seven specific cleavages are shown to occur in an ordered sequence starting at the C-terminus of the protoxin and proceeding toward the N-terminal region. At each step, C-terminal fragments of approximately 10 kDa are produced and rapidly proteolyzed to small peptides. The sequential proteolysis ends with a 67-kDa toxin which is resistant to further proteolysis. However, the toxin could be specifically split into two fragments by proteinases as it unfolded under denaturing conditions. Papain cleaved the toxin at glycine 327 to give a 34.5-kDa N-terminal fragment and a 32.3-kDa C-terminal fragment. Similar fragments could be generated by elastase and trypsin. The N-terminal fragment corresponds to the conserved N-terminal domain predicted from the gene-deduced sequence analysis of toxins from various subspecies of B. thuringiensis, and the C-terminal fragment is the predicted hypervariable sequence domain. A double-peaked transition was observed for the toxin by differential scanning calorimetry, consistent with two or more independent folding domains. It is concluded that the N- and C-terminal regions of the protoxin are two multidomain regions which give unique structural and biological properties to the molecule.  相似文献   

17.
18.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear homolog CaMKP-N are Ser/Thr protein phosphatases that belong to the PPM family. These phosphatases are highly specific for multifunctional CaM kinases and negatively regulate their activities. CaMKP-N is only expressed in the brain and specifically localized in the nucleus. In this study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing in both the zebrafish brain and Neuro2a cells. In Neuro2a cells, the proteolytic processing was effectively inhibited by the proteasome inhibitors MG-132, Epoxomicin, and Lactacystin, suggesting that the ubiquitin-proteasome pathway was involved in this processing. Using MG-132, we found that the proteolytic processing changed the subcellular localization of zCaMKP-N from the nucleus to the cytosol. Accompanying this change, the cellular targets of zCaMKP-N in Neuro2a cells were significantly altered. Furthermore, we obtained evidence that the zCaMKP-N activity was markedly activated when the C-terminal domain was removed by the processing. Thus, the proteolytic processing of zCaMKP-N at the C-terminal region regulates its catalytic activity, subcellular localization and substrate targeting in vivo.  相似文献   

19.
Keratins 8 (K8) and 18 (K18) are major components of intermediate filaments (IFs) of simple epithelial cells and tumors derived from such cells. Structural cell changes during apoptosis are mediated by proteases of the caspase family. During apoptosis, K18 IFs reorganize into granular structures enriched for K18 phosphorylated on serine 53. K18, but not K8, generates a proteolytic fragment during drug- and UV light–induced apoptosis; this fragment comigrates with K18 cleaved in vitro by caspase-6, -3, and -7. K18 is cleaved by caspase-6 into NH2-terminal, 26-kD and COOH-terminal, 22-kD fragments; caspase-3 and -7 additionally cleave the 22-kD fragment into a 19-kD fragment. The cleavage site common for the three caspases was the sequence VEVD/A, located in the conserved L1-2 linker region of K18. The additional site for caspases-3 and -7 that is not cleaved efficiently by caspase-6 is located in the COOH-terminal tail domain of K18. Expression of K18 with alanine instead of serine at position 53 demonstrated that cleavage during apoptosis does not require phosphorylation of serine 53. However, K18 with a glutamate instead of aspartate at position 238 was resistant to proteolysis during apoptosis. Furthermore, this cleavage site mutant appears to cause keratin filament reorganization in stably transfected clones. The identification of the L1-2 caspase cleavage site, and the conservation of the same or very similar sites in multiple other intermediate filament proteins, suggests that the processing of IFs during apoptosis may be initiated by a similar caspase cleavage.  相似文献   

20.
Limited proteolysis of Pseudomonas aeruginosa exotoxin A by four proteases (chymotrypsin, Staphylococcal serine proteinase, pepsin A and subtilisin) resulted in the formation of polypeptides having a molecular mass of approximately 25 kDa. They possessed both enzymatic activity and residual antigenicity. Their N-terminal sequence analysis showed that the different proteases cleaved exotoxin A in a very restricted area within domain Ib (amino acids 365-404). As a result, the polypeptides contained a large portion (13-34 amino acids) of domain Ib linked to the adjacent C-terminal domain III (amino acids 405-613). The major fragment derived from subtilisin cleavage, at a final yield of 35% (S-fragment; residues 392-613; 24201 Da; pI 4.7) possessed the same level of ADP-ribosyltransferase activity as uncleaved exotoxin A (by mass), and a 37-fold higher NAD-glycohydrolase activity. Polyclonal antibodies from rabbits against exotoxin A completely inhibited the ADP-ribosyltransferase activity of both exotoxin A and the S-fragment, but not the NAD-glycohydrolase activity of the S-fragment. Antibodies against the S-fragment neutralized the ADP-ribosyltransferase activity of exotoxin A. These data determine the primary proteolytic cleavage site of exotoxin A, suggest that some residues in the amino acid sequence 392-404 of exotoxin A seem to have a role in binding or positioning elongation factor 2 (EF-2) and show that antibodies recognize the EF-2-binding site but not the NAD(+)-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号