首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 917 毫秒
1.
The binding of [3H]SCH 23390 to dopamine (DA) D1-receptors was measured in the nucleus accumbens of rats treated chronically with desipramine for 14 days. DA D1 — and D2-receptor binding using [3H]SCH 23390 and [3H]spiperone, respectively as ligands, was determined in rats treated for 28 days. NeitherB max norK d values were influenced by chronic desipramine treatment. In addition, chronic desipramine treatment (28 days) did not influence the dose dependent, quinpirole (10–1000 nM)-mediated inhibition of the electrically stimulated release of [3H]DA and [14C]ACh from nucleus accumbens slices or the dose dependent increase in [3H]DA release and decrease in [14C]ACh release in the presence of 1 and 10 M nomifensine. Therefore, our results suggest that the effect of chronic antidepressant treatment cannot be attributed to changes in either DA D11-or D2-receptor binding or DA D2-receptor function in the nucleus accumbens.  相似文献   

2.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors.  相似文献   

3.
Abstract

Positron emission tomography studies (PET) on dopamine (DA) D2 receptors of schizophrenics provided conflicting data, perhaps because the ligands generally used, raclopride (RAC) and spiperone (SPI), did not label the same sites. In this study, we found that the in vivo binding characteristics of [3H]RAC and of [3H]SPI in rat brain, differed in many ways. 1) [3H]RAC labeled twice as many sites in striatum and olfactory tubercle and [3H]SPI twice as many sites in pituitary. 2) The kinetic was much shorter with [3H]RAC than [3H]SPI in striatum. 3) RAC, unlike SPI, did not exhibit limbic selectivity. 4) The modulation of [3H]RAC and [3H]SPI binding by endogenous DA were diametrically opposite: D-amphetamine decreased, and reserpine + α-methyl-p-tyrosine increased [3H]RAC binding in striatum whereas the opposite occured with [3H]SPI. This distinct binding pattern of [3H]RAC and [3H]SPI suggests that these two radioligands do not label the same receptor sites.  相似文献   

4.
In order to determine whether repeated cocaine administration produced persistent changes in dopamine (DA) receptor binding and release consistent with behavioral sensitization, rats were treated with either cocaine (25 mg/kg ip) or saline twice daily for 14 consecutive days followed by a 3-d withdrawal period. The DA transporter site was assayed using [3H]GBR 12935, whereas D1 and D2 sites were assayed using [3H]SCH 23390 and [3H]spiperone, respectively. The density (B max) of the DA transporter binding sites in the ST of the cocaine-treated group increased significantly (p<0.05) over controls 3 d after the last injection, whereas the density of striatal D1 and D2 binding sites remained unchanged. The DA transporter in the nucleus accumbens (NA) was also studied with [3H]GBR 12935 and was unchanged following drug treatment. D1 and D2 binding parameters for the NA were not determined in this study. Furthermore, cocaine administration did not affect the affinities (K d ) of the radioligands used to label the transporter, D1, or D2 sites in any of the studies performed. In addition, striatal DA release was measured using in vivo microdialysis in anesthetized rats. Linear regression analysis on maximal decreases in DA release after apomorphine (0.02, 0.2, and 2.0 mg/kg sc) injection showed no difference in the functional capacity of the ST to modulate DA transmission between control and treated groups. Moreover, animals pretreated with cocaine showed a significant (p<0.01) decrease in locomotor activity (LA) after a presynaptic, autoregulating dose of apomorphine (0.03 mg/kg sc) was given. These results suggest that the effects seen after repeated exposure to cocaine may be regulated, in part, by changes in striatal DA transporter binding site densities and not necessarily by DA-releasing mechanisms or D1 and D2 receptor modification.  相似文献   

5.
Abstract

Binding of [3H]spiperone was studied in membranes obtained from bovine neurohypophyses devoid of intermediate lobe tissue. Non-linear Scatchard plot suggested the presence of more than a single class of binding sites. Competition experiments using ketanserin, a ligand selective for 5-HT2 receptors, were carried out to ascertain whether serotonergic, in addition to dopaminergic receptors, might be responsible for the heterogeneity of [3H]spiperone binding. Computer-assisted modeling suggested the presence of two classes of binding sites for ketanserin (Ka = 1.6 ± 0.2 and 366.7 ± 20.5 nM, respectively). The Ka value for ketanserin binding to the high-affinity sites, as well as the Ka of [3H]spiperone for these sites suggested by the 2 sites model indicate that they represent serotonin 5-HT2 receptors. The [3H]spiperone Ka at the ketanserin low-affinity sites (65 ± 7 pM) and the rank order of inhibitory potencies for several antagonists show that the lowaffinity sites represent dopamine D-2 receptors.  相似文献   

6.
Abstract

We studied the binding of [3H]-spiperone on human term placental membranes. This binding reached plateau level after 30 min incubation at 37°C and was reversed (t1/2 ~ 5 min) by addition of an excess of unlabeled spiperone. Scatchard analysis of saturation experiments with increasing doses of [3H]-spiperone (0–25 nM) showed one class of high affinity binding sites with a dissociation constant (Kd) of 14 ± 2 nM and a maximal binding capacity (Bmax) of 222 ± 9 fmoles/mg protein. The affinity of 5 competitors was determined in competitive binding assays. The D2-dopamine antagonists were the most potent inhibitors: Ki for spiperone and haloperidol were 8 ± 2 and 56 ± 22 nM respectively. Dopamine inhibited [3H]-spiperone binding with a Ki of 570 ± 50 μM whereas Schering 23390 (D1 antagonist) and propranolol (β-adrenergic antagonist) were without effect. The binding was also inhibited by 100 μM GTPγS (38 ± 8% inhibition), indicating that the dopamine receptor is coupled with a GTP binding protein. These results demonstrate for the first time the presence of D2-dopamine receptors in human placenta.  相似文献   

7.
Abstract

The interaction of SCH 23390 with dopamine (DA) and serotonin (5-HT) systems has been examined in vivo and in vitro. Like selective 5-HT2 blockers, SCH 23390 inhibited in vivo [3H]spiperone binding in the rat frontal cortex (ID50: 1.5 mg/kg) without interacting at D2 sites. SCH 23390 was equipotent to cinanserin and methysergide. In vitro, SCH 23390 inhibited [3H]ketanserin binding to 5-HT2 sites (IC50 = 30 nM). Biochemical parameters linked to DA and 5-HT were not changed excepted in striatum where SCH 23390 increased HVA and DOPAC. In the L-5-HTP syndrome model, SCH 23390 clearly showed antagonism of 5-HT2 receptors. SCH 23390 had weak affinity for 5-HT1B (IC50 = 0.5 μM), 5-HT1A (IC50 = 2.6 μM) and α;1-adenergic receptors (IC50 = 4.4 μM).  相似文献   

8.
Partial purification of dopamine D2 receptors using lectin affinity columns   总被引:1,自引:0,他引:1  
Dopamine D2 receptors , detected by [3H]spiperone Dopamine D2 receptors , detected by [3H]spiperone binding, were solubilized from bovine caudate nucleus by cholate/sodium chloride and were found to bind to wheat germ agglutinin immobilized on agarose. Specific elution could be achieved with N-acetylglucosamine whereas other sugars tested were inactive in this regard . The eluted preparation was enriched in solubilized receptors about sevenfold. The pharmaco-logical properties of the preparation were essentially unchanged by the lectin affinity purification procedure. The D2 dopamine receptor is therefore a glycoprotein. binding, were solubilized from bovine caudate nucJeus by cholate/sodium chloride and were found to bind to wheat germ agglutinin immobilized on agarose. Specific elution could be achieved with N-acetylglucosamine whereas other sugars tested were inactive in this regard . The eluted preparation was enriched in solubilized receptors about sevenfold. The pharmacological properties of the preparation were essentially unchanged by the lectin affinity purification procedure. The D2 dopamine receptor is therefore a glycoprotein.  相似文献   

9.
Abstract: Specific binding of tritiated dopamine, spiperone, and N-propylnorapomorphine was examined in subcellular fractions from bovine caudate nucleus. All fractions contained at least two sets of specific binding sites for [3H]spiperone (KD 1aPP= 0.2 nM, KD 2aPP= 2.2 nM), the higher affinity sites accounting for one-third to one-eighth of the total. [3H]Spiperone binding was slightly enriched over the total particulate fraction in P2, P3, SPM, and a crude fraction of synaptic mitochondria. A microsomal subfraction (P3B2) exhibited the highest specific binding capacity obtained, representing a fourfold enrichment over the total particulate fraction. [3H]Dopamine exhibited apparent binding to a single class of high-affinity sites in all fractions examined (KDaPP= 4.0 nM). A greater than twofold enrichment was observed in all fractions except myelin and P3, with a fivefold enrichment in SPM and P3B2. At least two classes of receptors were labeled by [3H]-N-propylnorapomorphine (KD 1aPP= 0.55 nM, KD 2aPP= 20 nM), using 50 nM-spiperone together with 100 nM-dopamine to define nonspecific binding. Although binding to the higher affinity site was displaced by spiperone, and lower affinity binding by dopamine, comparison of receptor densities with values obtained by using [3H]spiperone and [3H]dopamine directly suggested that [3H]-N-propylnorapomorphine labeled additional sites. We have also examined a postsynaptic membrane (PSM) fraction obtained from SPM by successive extraction with salt and EGTA followed by sonication and separation on a density gradient. [3H]Spiperone binding in PSM was enriched two- to threefold over unfractionated SPM with a concomitant decrease in [3H]dopamine binding. The enrichment in spiperone receptors was almost entirely due to an increase in the number of lower affinity binding sites, suggesting that these sites may be associated with the postsynaptic membrane.  相似文献   

10.
Abstract

[3H]spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable; but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5–HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid > nomifensine > D-amphetamine ± methylphenidate > amineptine > bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA.  相似文献   

11.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

12.
Competition by Estrogens for Catecholamine Receptor Binding In Vitro   总被引:2,自引:2,他引:0  
Abstract: We have examined the ability of various steroids to compete for high-affinity binding of 3H-labeled ligands to catecholamine receptors in membranes prepared from rat cerebral cortex, striatum, and anterior pituitary. Ligands employed were: [3H]WB4101, [3H]prazosin, [3H]yohimbine, and [3H]clonidine (alpha-noradrenergic); [3H]dihydroalprenolol (beta-noradrenergic); [3H]spiperone and [3H]ADTN (dopaminergic). Only the 17β estrogens were effective and only binding of [3H]spiperone and [3H]ADTN in striatum and [3H]WB4101 and [3H]prazosin in cerebral cortex was reduced. Thus putative dopaminergic and alpha1-noradrenergic sites alone appear to recognize estrogens. A slight competitive effect on [3H]spiperone binding to anterior pituitary membranes was also observed. Among the 17β estrogens tested, the most effective in all cases was the catechol estrogen 2-hydroxyestradiol (2-OHE2). The ability of 2-OHE2 (IC50= 20–30 μM) to inhibit ligand binding to alpha1 receptors was comparable to that of norepinephrine (IC50= 10–20 μM), whereas for dopamine receptors in striatum and pituitary 2-OHE2 was an order of magnitude less effective than dopamine (IC30= 12 μM) in reducing binding of 3H ligands. Estradiol-17β and 2-hydroxyestrone were also able to inhibit binding, but the order of steroid potency was different for alpha1 and dopaminergic receptors. Progesterone, testosterone, and corticosterone were without effect in all cases. These results show that there is specificity of steroid interactions with catecholamine receptors in the brain, both in terms of steroid structure and receptor type. The possible relevance of these interactions to neuroendocrine function is discussed.  相似文献   

13.
J.F. Cubells  J.A. Joseph 《Life sciences》1981,28(11):1215-1218
This study was carried out to evaluate the behavioral implications of previously reported declines in striatal dopamine receptors sensitive to [3H]-neuroleptic specific binding. Rotational behavior was examined following right intrastriatal dopamine (DA) injections in nialamide pretreated rats that had been previously unilaterally lesioned in the left substantia nigra with 6-hydroxydopamine. Results showed that following DA injections old rats exhibited significant deficits in rotational behavioral response strength when compared to young rats. Results are discussed in terms of relating behavioral alterations in stereotypic behavior that occur with senescence to changes in striatal D2 receptors.  相似文献   

14.
Abstract: The ontogeny of binding sites for [3H] spiperone was studied in time-pregnant rats. Binding of [3H]spiperone to fresh homogenates of pre- and postnatal rat forebrain was characterized by Scatchard analysis and competition experiments with a number of dopaminergic and serotonergic agonists and antagonists and additional substances. A convenient discrimination of three high-affinity sites, i.e., the dopaminergic D2, serotonergic S2, and spirodecanone (Sd) sites, was obtained with l-(–)sulpiride and cis-flupenthixol. The analgesic R5573 was found not to be specific for the Sd site but to interact with all three sites. The three binding sites became detectable in sequential order. S2 and D2 binding sites were first found at embryonic days 15.75 and 17.75, respectively. The Sd site did not appear before postnatal day 8. All three binding sites reached adult values at approximately postnatal day 30. During the prenatal period, the increase in the number of D2 binding sites paralleled the rise in forebrain dopamine concentrations. The kinetics of D2 and S2 sites were the same at embryonic day 19.75 and postnatal day 30. These observations provide evidence for the presence of the receptor substrate for actions of neuroleptics on dopaminergic and serotonergic systems during fetal life.  相似文献   

15.
Abstract: This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

16.
After murine fetal cells from the rostral mesencephalic tegmentum were isolated, prepared, and cultured; neuronal and glial cells in primary mixed cell cultures were exposed to ferric nitrilotriacetate (Fe-NTA) at varying concentrations. Studies were performed at 23 days in culture after 14 day exposure to Fe-NTA. In addition to morphologic studies, biochemical assays including specific [3H]flunitrazepam (FLU) binding, clonazepam (CLO)-displaceable [3H]-FLU binding, Ro5-4864-displaceable [3H]-FLU binding, [3H]dopamine (DA) uptake, [3H]haloperidol (HAL) binding, [3H]spiperone (SP) binding, glutamine synthetase activity (GS), and protein determinations were performed. The data demonstrate that chelated ferric iron has an adverse effect on these cells. The data also demonstrate that increasing concentrations of Fe-NTA resulted in massive neuronal dropout leaving the culture population virtually all glial; however, the specific binding of [3H]HAL and [3H]SP increased. There was a concomitant decrease in both glutamine synthetase activity and overall protein content. The mechanism of enhancement in the presence of Fe-NTA of [3H]HAL and [3H]SP binding is unknown and may be unique, but may be related to the known increase in D2 receptor ligand affinity in the presence of other multivalent cations (Ca2+ and Mg2+).  相似文献   

17.
Diurnal variations of dopaminergic D2 receptors have been described in the striatum of rats, while other dopaminergic regions remain unstudied. Diurnal variations of dopamine D2 receptors in the striatum, frontal cortex, and amygdala of the rat, were characterized by the stereospecific binding of [3H]-spiperone. Clear rhythms were found in all these areas, but asynchronous to each other. Striatal receptors had diurnal variations with a single peak at 00:00 hours. Frontal cortex receptors showed two peaks at 00:00 and 12:00 hours. Amygdaline complex receptors had two peaks at 18:00 and 06:00 hours. Saturation binding curves and their Scatchard analysis indicated that the diurnal variations in [3H]-spiperone binding are related to changes in receptor density rather than its affinity. The diurnal variations asynchrony in [3H]-spiperone binding to dopaminergic D2 receptors from different neural regions, suggest different regulation in each area. Other functional implications of these rhythms remains to be established.  相似文献   

18.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   

19.
Summary This work was designed to study the changes produced by cocaine-induced seizures and lethality on dopaminergic D1- and D2-like receptors, muscarinic M1-like binding sites, as well as acetylcholinesterase activity in mice prefrontal cortex (PFC) and striatum (ST). Binding assays were performed in brain homogenates from the PFC and ST and ligands used were [3H]-N-methylscopolamine, [3H]-NMS (in the presence of carbachol), [3H]-SCH 23390 and [3H]-spiroperidol (in presence of mianserin), for muscarinic (M1-like), D1- and D2-like receptors, respectively. Brain acetylcholinesterase (AChE) activity was also determined in these brain areas. Cocaine-induced SE decreased [3H]-SCH 23390 binding in both ST and PFC areas. A decrease in [3H]-NMS binding and an increase in [3H]-spiroperidol binding in PFC was also observed. Cocaine-induced lethality increased [3H]-spiroperidol binding in both areas and decreased [3H]-NMS binding only in PFC, while no difference was seen in [3H]-SCH 23390 binding. Neither SE, nor lethality altered [3H]-NMS binding in ST. AChE activity increased after SE in ST while after death the increase occurred in both PFC and ST. In conclusion, cocaine-induced SE and lethality produces differential changes in brain cholinergic and dopaminergic receptors, depending on the brain area studied suggesting an extensive and complex involvement of these with cocaine toxicity in central nervous system.  相似文献   

20.
Hypoglycaemic coma and brain injury are potential complications of insulin therapy. Hippocampal neurons are particularly vulnerable to hypoglycaemic stress leading to memory impairment. In the present article, we have investigated the dopamine (DA) content, homovanillic acid (HVA)/DA turnover ratio, DA D1 and DA D2 receptors in the hippocampus of insulin-induced hypoglycaemic (IIH) and streptozotocin induced diabetic rats where brain functions are impaired. The DA content decreased significantly in hippocampus of diabetic, diabetic +IIH and control +IIH rats compared to control. The HVA/DA turnover ratio also increased significantly in diabetic, diabetic +IIH and control +IIH rats compared to control. Scatchard analysis using [3H] DA in the hippocampus showed a significant increase in DA receptors of diabetic, diabetic +IIH and control +IIH rats with decreased affinity. Gene expression studies using Real-time PCR showed an increased expression of DA D1 and DA D2 receptors in the hippocampus of hypoglycaemic and diabetic rats. Our results indicate that the dopaminergic system is impaired in the hippocampus of hypoglycaemic and hyperglycaemic rats impairing DA related functions of hippocampus. We observed a prominent dopaminergic functional disturbance in the hypoglycaemic condition than in hyperglycaemia compared to control. This dopaminergic dysfunction in hippocampus during hypoglycaemia and hyperglycaemia is suggested to contribute to cognitive and memory deficits. This will have clinical significance in the treatment of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号