首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the construction, expression and characterization of recombinant proteins comprising the enhanced green fluorescent protein (EGFP) fused to the amino-terminal part of the muscarinic hM1 receptor together or not with an additional hexahistidine tag placed at the C-terminal end of the receptor. Expression of the fluorescent proteins reaches levels identical to those of the wt hM1 receptor, provided that fusion takes place at the very N-terminal end of the receptor. Also correct protein folding and targeting to plasma membrane is obtained upon addition of a signal peptide promoting amino-terminal domain translocation through the membrane. Ligand binding properties of--and activation of the calcium release response by--the fusion proteins are almost identical to those of the wild-type muscarinic receptor, indicating that such fluorescently-labelled receptors are valuable model systems for further functional, biochemical and structural studies.  相似文献   

2.
The ryanodine receptor (RyR) is a large homotetrameric protein with a hydrophobic domain at the C-terminal end that resides in the endoplasmic reticulum (ER) or sarcoplasmic reticulum membrane and forms the conduction pore of a Ca(2+) release channel. Our previous studies showed that RyR expressed in heterologous cells localized to the ER membrane. Confocal microscopic imaging indicated that the ER retention signal is likely present within the C-terminal portion of RyR, a region that contains four putative transmembrane segments. To identify the amino acid sequence responsible for ER retention of RyR, we expressed fusion proteins containing intercellular adhesion molecule (ICAM), various fragments of RyR, and green fluorescent protein (GFP) in Chinese hamster ovary and COS-7 cells. ICAM is a plasma membrane-resident glycoprotein and serves as a reporter for protein trafficking to the cell surface membrane. Imaging analyses indicated that ICAM-GFP fusion proteins with RyR sequence preceding the four transmembrane segments, ICAM-RyR-(3661-3993)-GFP, and with RyR sequence corresponding to transmembrane segments 1, 2, and 3, ICAM-RyR-(4558-4671)-GFP and ICAM-RyR-(4830-4919)-GFP, were localized to the plasma membrane; fusion proteins containing the fourth transmembrane segment of RyR, ICAM-RyR-(4913-4943)-GFP, were retained in the ER. Biochemical assay showed that ICAM-RyR-GFP fusion proteins that target to the plasma membrane are fully glycosylated, and those retained in the intracellular membrane are core-glycosylated. Together our data indicate that amino acids 4918-4943 of RyR contain the signal sequence for ER retention of the Ca(2+) release channel.  相似文献   

3.
【目的】探索大肠杆菌生长分裂过程中,脂肪酸作为底物在细胞膜合成过程中的掺入模式。【方法】本研究解析了以乙酰CoA为底物,合成中间产物长链脂酰-ACP,随后合成磷脂酰乙醇胺(phosphatidylethanolamine,PE)的途径,并将合成途径中的10个关键酶与绿色荧光蛋白(enhanced green fluorescent protein,EGFP)或红色荧光蛋白(monmer Cherry,mCherry)进行融合,在大肠杆菌内表达这些融合蛋白,用激光共聚焦荧光显微镜成像的方式来获得这些融合蛋白的定位信息。【结果】宽场荧光显微镜成像结果显示,磷脂酰乙醇胺合成途径中的10个酶在不同表达水平下出现不同的定位模式。在大肠杆菌中高水平表达融合蛋白EGFP-FabA、EGFP-FabB、EGFP-FabI、EGFP-FabG、EGFP-PlsB和EGFP-PssA时,细胞两极和中部有大量蛋白聚集的现象。EGFP-FabD、EGFP-FabF、EGFP-CdsA、EGFP-PSD在不同表达水平下,均匀分散在细胞质或细胞膜上。缩时影像(Time-lapse)结果显示,合成途径中的一个关键蛋白EGFP-Pls B在细胞分裂前随着细胞膜的内陷聚集到细胞隔膜,随着细胞分裂,母细胞的隔膜成为新细胞的两极。【结论】本研究通过获取磷脂酰乙醇胺合成相关蛋白酶在大肠杆菌中的定位结果,推测脂肪酸分子是在细胞分裂隔膜和两极掺入,被催化合成PE后被运送到细胞膜其他位置。  相似文献   

4.
Fluorescence recovery after photobleaching of muscarinic receptors and G protein subunits tagged with cyan or yellow fluorescent protein showed that receptors and G proteins were mobile and not immobilized on the cell membrane. The cyan fluorescent protein-tagged Galpha and yellow fluorescent protein-tagged Gbeta subunits were used to develop sensors that coupled selectively with the M2 and M3 muscarinic receptors. In living Chinese hamster ovary cells, imaging showed that sensors emitted a fluorescence resonance energy transfer signal that was abrogated on receptor activation. When sequentially activated with highly expressed muscarinic receptors and endogenous receptors expressed at low levels, sensor molecules were sensitive to the sequence of activation and the receptor numbers. The results distinguish between models proposing that receptor and G protein types interact freely with each other on the cell membrane or that they function as mutually exclusive multimolecular complexes by providing direct support for the former model in these cells.  相似文献   

5.
Four recombinant human M1 (hM1) muscarinic acetylcholine receptors (mAChRs) combining several modifications were designed and overexpressed in HEK293 cells. Three different fluorescent chimera were obtained through fusion of the receptor N terminus with enhanced green fluorescent protein (EGFP), potential glycosylation sites and a large part of the third intracellular (i3) loop were deleted, a hexahistidine tag sequence was introduced at the receptor C terminus, and, finally, a FLAG epitope was either fused at the receptor N terminus or inserted into its shortened i3 loop. High expression levels and ligand binding properties similar to those of the wild-type hM1 receptor together with confocal microscopy imaging demonstrated that the recombinant proteins were correctly folded and targeted to the plasma membrane, provided that a signal peptide was added to the N-terminal domain of the fusion proteins. Their functional properties were examined through McN-A-343-evoked Ca2+ release. Despite the numerous modifications introduced within the hM1 sequence, all receptors retained nearly normal abilities (EC50 values) to mediate the Ca2+ response, although reduced amplitudes (Emax values) were obtained for the i3-shortened constructs. Owing to the bright intrinsic fluorescence of the EGFP-fused receptors, their detection, quantitation, and visualization as well as the selection of cells with highest expression were straightforward. Moreover, the presence of the different epitopes was confirmed by immunocytochemistry. Altogether, this work demonstrates that these EGFP- and epitope-fused hM1 receptors are valuable tools for further functional, biochemical, and structural studies of muscarinic receptors.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-mediated membrane fusion occurs as a sequence of events that is triggered by CD4 binding to the Env gp120 subunit. In this study, we analyzed the dynamics of Env-mediated membrane fusion at the single-cell level using fluorescent fusion proteins and confocal laser fluorescent microscopy. Either enhanced cyan or yellow fluorescent protein (CFP and YFP, respectively) was fused to the end of the cytoplasmic regions of the HIV-1 receptors (CD4 and CCR5) and Env proteins. Real-time imaging of membrane fusion mediated by these recombinant proteins revealed that the kinetics of fusion in our system was faster than that previously reported. Analysis of the receptor interaction by fluorescence resonance energy transfer (FRET) at the single-cell level demonstrated a tendency for oligomerization of CD4-CD4, but not of CD4-CCR5, in the absence of Env-expressing cells. However, when Env-expressing cells attached to the receptor cells, FRET produced by CD4-CCR5 interaction was increased; the FRET intensity began to decline before the formation of the fusion pore. These changes in FRET may represent the temporal association of these receptors, triggered by gp120 binding, and their dissociation during the formation of the fusion pore. In addition, the FRET analysis of receptor interactions in the presence of fusion inhibitors showed that not only inhibitors acting on CCR5 but also the gp41-derived peptide T-20 interfered with CD4-CCR5 interaction during fusion. These data suggest that T-20 could affect the formation of Env-receptors complexes during the membrane fusion.  相似文献   

7.
8.
9.
The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g. EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extracellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes ('activate the fluorogen'). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000-fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (β2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well.  相似文献   

10.
Digitonin-solubilized cardiac muscarinic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack high-affinity muscarinic receptors. The number of receptors reconstituted was proportional to the quantity of soluble receptors added to the reconstitution system. Specific [3H](-)-quinuclidinyl benzilate binding to the reconstituted receptor was found to be saturable with a Kd (dissociation constant) equal to 48 +/- 4 pM and a Bmax (maximal density of binding sites) equal to 50 +/- 5 fmol/mg of protein. Competitive binding studies indicated that the reconstituted receptors showed stereoselectivity and drug specificity consistent with a high-affinity muscarinic receptor. Agonist binding to the reconstituted receptor was decreased by the addition of guanyl-5'-yl imidodiphosphate. Sixty per cent of the reconstituted receptors were found to be integral membrane proteins. The molecular weight of the reconstituted receptor as determined by sodium dodecyl sulfate-gel electrophoresis was 76,000 +/- 2,000 and was identical to the molecular weight of the muscarinic receptor in the original cardiac membranes. The data indicate that a partially functional, intact muscarinic receptor was reconstituted into human erythrocyte acceptor membranes and that membrane constituents may be required to stabilize the receptor in a high-affinity state for antagonists.  相似文献   

11.
This paper describes a novel strategy to create a microarray of G‐protein coupled receptors (GPCRs), an important group of membrane proteins both physiologically and pharmacologically. The H1‐histamine receptor and the M2‐muscarinic receptor were both used as model GPCRs in this study. The receptor proteins were embedded in liposomes created from the cellular membrane extracts of Spodoptera frugiperda (Sf9) insect cell culture line with its accompanying baculovirus protein insert used for overexpression of the receptors. Once captured onto a surface these liposomes provide a favourable lipidic environment for the integral membrane proteins. Site directed immobilisation of these liposomes was achieved by introduction of cholesterol‐modified oligonucleotides (oligos). These oligo/cholesterol conjugates incorporate within the lipid bilayer and were captured by the complementary oligo strand exposed on the surface. Sequence specific immobilisation was demonstrated using a quartz crystal microbalance with dissipation (QCM‐D). Confirmatory results were also obtained by monitoring fluorescent ligand binding to GPCRs captured on a spotted oligo microarray using Confocal Laser Scanning Microscopy and the ZeptoREADER microarray imaging system. Sequence specific immobilisation of such biologically important membrane proteins could lead to the development of a heterogeneous self‐sorting liposome array of GPCRs which would underpin a variety of future novel applications.  相似文献   

12.
The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of the TatABC proteins in live E. coli cells, we have individually expressed fluorophore-tagged versions of each Tat protein in addition to a set of chromosomally encoded TatABC proteins. In this way, a Tat translocase could form from the native TatABC proteins and be visualized via the association of a fluorescent Tat variant. A functionally active TatA-green fluorescent protein fusion was found to re-locate from a uniform distribution in the membrane into a few clusters preferentially located at the cell poles. Clustering was absolutely dependent on the co-expression of functional Tat substrates, the proton-motive force, and the cognate TatBC subunits. Likewise, polar cluster formation of a functional TatB-mCherry fusion required TatA and TatC and that of a functional TatC-mCherry fusion a functional Tat substrate. Furthermore we directly demonstrate the co-localization of TatA and TatB in the same fluorescent clusters. Our collective results are consistent with distinct Tat translocation sites dynamically forming in vivo in response to newly synthesized Tat substrates.  相似文献   

13.
14.
Adiponectin is one of the most abundant fat-derived hormones involved in a multitude of metabolism pathways. The receptors AdipoR1 and AdipoR2 of this metabolically active protein have been identified recently. AdipoR1 and AdipoR2 are most abundantly expressed in the skeletal muscle and in the liver, respectively. It has been postulated that although they both consist of seven transmembrane helices, they are distinct from other G protein-coupled receptors (GPCRs). We cloned both receptors as fusion proteins with enhanced yellow fluorescent protein (YFP) to determine their localization and orientation in the cell membrane. By confocal microscopy and immune staining we demonstrated that both receptor-YFP-fusion proteins are integral membrane proteins with the predicted topology—an intracellular N-terminus and an extracellular C-terminus. In parallel, comparative experiments were performed with the NPY Y2–receptor, a classical rhodopsin-like GPCR.  相似文献   

15.
Kweon DH  Chen Y  Zhang F  Poirier M  Kim CS  Shin YK 《Biochemistry》2002,41(17):5449-5452
Highly conserved soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins control membrane fusion at synapses. The target plasma membrane-associated SNARE proteins and the vesicle-associated SNARE protein assemble into a parallel four-helix bundle. Using a novel EPR approach, it is found that the SNARE four-helix bundles are interconnected via domain swapping that is achieved by substituting one of the two SNAP-25 helices with the identical helix from the second four-helical bundle. Domain swapping is likely to play a role in the multimerization of the SNARE complex that is required for successful membrane fusion. The new EPR application employed here should be useful to study other polymerizing proteins.  相似文献   

16.
【目的】研究小反刍兽疫病毒囊膜糖蛋白(血凝素蛋白和融合蛋白)在病毒囊膜和宿主细胞膜融合过程中所发挥的作用。【方法】制备构建成功的小反刍兽疫病毒囊膜糖蛋白和病毒受体SLAM、Nectin4的真核表达质粒pCMV-HA-H、pCAGGS-Flag-F、pCMV-Myc-SLAM和pCMV-Myc-Nectin 4,将其组合转染至CHO-K1细胞,通过显微观察和间接免疫荧光技术分析小反刍兽疫病毒H和F蛋白在病毒融合过程中的功能。【结果】除空白对照组和重组质粒单独转染组细胞中没有发现合胞体外,其余组细胞中均出现了合胞体,而且F和H蛋白共转染组合胞体的数目明显较多;并在共表达H、F蛋白的细胞中观察到了蛋白分布极化的帽子现象。【结论】PPRV F蛋白是病毒囊膜和细胞膜融合的必需蛋白,但需要与PPRV H共同作用才能使病毒成功入侵靶细胞。  相似文献   

17.
Zhang Y  Yang J  Showalter AM 《Planta》2011,233(4):675-683
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins (HRGPs). AtAGP17, 18 and 19 comprise the lysine-rich classical AGP subfamily in Arabidopsis. Overexpression of GFP–AtAGP17/18/19 fusion proteins in Arabidopsis revealed localization of the fusion proteins on the plant cell surface of different organs. Subcellular localization of the fusion proteins at the plasma membrane was further determined by plasmolysis of leaf trichome cells. To elucidate AtAGP17/18/19 function(s), these AGPs were expressed without the green fluorescent protein (GFP) tag under the control of 35S cauliflower mosaic virus promoter. In contrast to AtAGP17/AtAGP19 overexpressors which showed phenotypes identical to wild-type plants, AtAGP18 overexpressors displayed several phenotypes distinct from wild-type plants. Specifically, these overexpressors had smaller rosettes and shorter stems and roots, produced more branches and had less viable seeds. Moreover, these AtAGP18 overexpressors exhibited similar phenotypes to tomato LeAGP-1 overexpressors, suggesting these two AGP genes may have similar function(s) in Arabidopsis and tomato.  相似文献   

18.

Background

G protein-coupled receptors fused to a Gα-subunit are functionally similar to their unfused counterparts. They offer an intriguing view into the nature of the receptor–G protein complex, but their usefulness depends upon the stability of the fusion.

Methods

Fusion proteins of the M2 muscarinic receptor and the α-subunit of Gi1 were expressed in CHO and Sf9 cells, extracted in digitonin–cholate, and examined for their binding properties and their electrophoretic mobility on western blots.

Results

Receptor fused to native αi1 underwent proteolysis near the point of fusion to release a fragment with the mobility of αi1. The cleavage was prevented by truncation of the α-subunit at position 18. Binding of the agonist oxotremorine-M to the stable fusion protein from Sf9 cells was biphasic, and guanylylimidodiphosphate promoted an apparent interconversion of sites from higher to lower affinity. With receptor from CHO cells, the apparent capacity for N-[3H]methylscopolamine was 60% of that for [3H]quinuclidinylbenzilate; binding at saturating concentrations of the latter was inhibited in a noncompetitive manner at low concentrations of unlabeled N-methylscopolamine.

Conclusions

A stable fusion protein of the M2 receptor and truncated αi1 resembles the native receptor–G protein complex with respect to the guanyl nucleotide-sensitive binding of agonists and the noncompetitive binding of antagonists.

General significance

Release of the α-subunit is likely to occur with other such fusion proteins, rendering the data ambiguous or misleading. The properties of a chemically stable fusion protein support the notion that signaling proceeds via a stable multimeric complex of receptor and G protein.  相似文献   

19.
Severe acute respiratory syndrome coronavirus (SARS-CoV) membrane protein and 5-lipoxygenase-activating protein (FLAP) are among a large number of membrane proteins that are poorly expressed when traditional expression systems and methods are employed. Therefore to efficiently express difficult membrane proteins, molecular biologists will have to develop novel or innovative expression systems. To this end, we have expressed the SARS-CoV M and FLAP proteins in Escherichia coli by utilizing a novel gene fusion expression system that takes advantage of the natural chaperoning properties of the SUMO (small ubiquitin-related modifier) tag. These chaperoning properties facilitate proper protein folding, which enhances the solubility and biological activity of the purified protein. In addition to these advantages, we found that SUMO Protease 1, can cleave the SUMO fusion high specificity to generate native protein. Herein, we demonstrate that the expression of FLAP and SARS-CoV membrane proteins are greatly enhanced by SUMO fusions in E. coli.  相似文献   

20.
【目的】为了给外源蛋白在酿酒酵母细胞中的定位提供参考,构建酿酒酵母荧光定位报告菌株。【方法】运用染色体同源重组的方法,将突变的、已进行酵母表达优化的红色荧光蛋白RedStar分别整合到12个酵母细胞器标记蛋白的C端,与之进行融合表达,用特异性引物对每一个酵母荧光定位报告菌株进行PCR扩增和测序验证,用激光共聚焦显微镜进行荧光检测,对线粒体和细胞核进行特异性染料染色,用EGFP标记沙门氏菌已知定位蛋白SipA,与构建的相应荧光定位报告菌株进行共定位。【结果】构建的酿酒酵母荧光定位报告菌株可分别标示酵母细胞的肌动蛋白、晚期胞内体、细胞核、核周质、纺锤体、线粒体、过氧化物酶体、脂滴、初级内吞体、次级内吞体、高尔基体顺面及高尔基体反面。PCR扩增及测序验证、荧光检测、染料与相应报告菌株的共定位、已知定位蛋白SipA与相应报告菌株的共定位均提示报告菌株构建成功。【结论】这些报告菌株的构建,为日后在酵母中观察细胞器动态变化,以及未知蛋白在酵母中的定位提供了基础性工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号