首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We constructed the significant low‐expression P‐glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high‐expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1‐inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle‐mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal‐induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
It has been reported that miR-623 is deregulated in lung adenocarcinoma and inhibits tumor growth and invasion. However, it is unclear whether miR-623 has a role in the progression of hepatocellular carcinoma (HCC). Herein, we found that miR-623 was significantly downregulated in HCC, and that its expression was related to poor clinical outcomes of patients with HCC. Upregulation of miR-623 decreased cell proliferation, viability, migration, and invasion and further promoted apoptosis in 7721, Huh7, and Bel-7402 cells. Moreover, we also observed that miR-623 regulated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), Wnt/β-catenin, and extracellular regulated protein kinases/c-Jun N-terminal kinase (ERK/JNK) signaling pathways as well as the expression level of related proteins. Further, X-ray repair cross complementing 5 (XRCC5) was a direct target for miR-623, and the suppression of PI3K/Akt, Wnt/β-catenin, and ERK/JNK signaling pathways and cell proliferation and invasion abilities caused by miR-623 in HCC cells was significantly reversed by the upregulation of XRCC5. Collectively, our data suggested that miR-623 suppressed the progression of HCC by regulating the PI3K/Akt, Wnt/β-catenin, and ERK/JNK pathways by targeting XRCC5 in HCC in vitro, indicating that miR-623 may be a target for the therapy of HCC.  相似文献   

6.
7.
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway.  相似文献   

8.
Intracellular cysteine aspartate-specific proteases (caspases) play both signaling and effector roles in realizing the program of cell death. Caspases function as proteolytic cascades unique for each cell type and signal triggering apoptosis. All parts of the proteolytic cascades are duplicated and controlled by feedback signals. Amplification cycles between pairs of caspases (the third and the sixth, the ninth and the third, the twelfth and the sixth, and others) help multiply the initial apoptotic signal. The presence of physiological inhibitors of apoptosis that directly interact with caspases creates a multilevel regulatory network of apoptosis in cell. The caspase proteolytic cascades are also regulated by sphingolipid secondary messengers, among them ceramide, sphingosine, and their phosphates. Moreover, an association of the caspase signaling with ubiquitin-dependent proteolysis is shown in cells. In particular, the use of extracellular activators and inhibitors of caspases allows irreversible activation of apoptosis in tumor cells or the prevention of apoptosis in cortical neurons under neurodegenerative diseases.  相似文献   

9.
Emerging evidence have discovered that circular RNAs (circRNAs) may serve as diagnostic or tumor promising biomarkers. This study aimed to investigate how circular RNA ADAMTS14 (circADAMTS14) regulates microRNA-572/ regulator of calcineurin 1(miR-572/ RCAN1) in hepatocellular carcinoma (HCC). The expression profiles of circRNA/microRNA (mRNA) between HCC tissues and paired adjacent tissues were analyzed via microarray analysis. The expressions of circADAMTS14, miR-572, and RCAN1 were measured by real-time polymerase chain reaction (PCR). The protein expression level of RCAN1 in HCC cells was detected by western blot. The viability and apoptosis levels of HCC cell lines were measured by the cell counting Kit-8 (CCK-8) assay and fluorescence-activated cell sorter. The invasiveness and migration of cells were detected based on the transwell and wound-healing assay, respectively. The dual-luciferase reporter assays were used to reveal circADAMTS14 and RCAN1 as a potential target of miR-572, which was predicted by TargetScan and miRBase. The effect of circADAMTS14 on HCC cells was demonstrated by tumor formation in nude mice in vivo. CircADAMTS14 and RCAN1 were lowly expressed in HCC clinical specimens and cell lines using microarrays and qRT-PCR, but miR-572 inversely. Our study further verified the direct interaction between circADAMTS14 and RCAN1 with miR-572 via the dual-luciferase reporter gene assay. Overexpressed circADAMTS14 and RCAN1 induced apoptosis of HCC cells and inhibited cell proliferation and invasion. But overexpressed miR-572 could decrease apoptosis of HCC cells and promote proliferation and invasion. In vivo, circADAMTS14 inhibited the tumor growth, correlated positively with the protein expression levels of RCAN1. Our results demonstrated that circADAMTS14 might suppress HCC progression through regulating miR-572/ RCAN1 as the competing endogenous RNA.  相似文献   

10.
Hepatocellular carcinoma (HCC) is mainly associated with hepatitis B virus (HBV) infection and characterized by metastasizing and infiltrating adjacent and distant tissues. Notably, microRNA-1271 (miR-1271) is a tumor suppressor in various cancers. Therefore, we evaluate the ability of miR-1271 to influence cell proliferation, migration, invasion, and apoptosis in HBV-associated HCC through the Adenosine monophosphate–activated protein kinase (AMPK) signaling pathway via targeting CCNA1. HBV-associated HCC and adjacent normal tissues were collected to identify the expression of miR-1271 and CCNA1. To verify the relationship between miR-1271 and CCNA1, we used bioinformatics prediction and the dual-luciferase reporter gene assay. The effects of miR-1271 on HBV-associated HCC cell behaviors were investigated by treatment of the miR-1271 mimic, the miR-1271 inhibitor, or small interfering RNA against CCNA1. The HBV-DNA quantitative assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid assay, scratch test, transwell assay, and flow cytometry were used to detect HBV-DNA replication, cell proliferation, invasion, migration, and apoptosis. MiR-1271 showed a low expression, whereas CCNA1 showed a high expression in HBV-associated HCC tissues. We identified that miR-1271 targeted and negatively regulated CCNA1. Upregulated miR-1271 and downregulated CCNA1 inhibited the HBV-associated HCC cell HBV-DNA replication, proliferation, migration, and invasion, while accelerating apoptosis by activating the AMPK signaling pathway. MiR-1271 promotes the activation of the AMPK signaling pathway by binding to CCNA1, whereby miR-1271 suppresses HBV-associated HCC progression. This study points to a potential therapeutic approach of downregulation of miR-1271 in HBV-associated HCC treatment.  相似文献   

11.
12.
ObjectiveTo investigate the association between DD, ID and II genotypes of ACE gene and carotid stenosis, and to construct a network of ACE-related genes regulating carotid stenosis.ApproachesMeta-analysis was used to study the association between three genotypes DD, ID and II of carotid stenosis susceptibility gene ACE; functional annotation of ACE gene was conducted by GO analysis; and a network of ACE-related genes that regulate the mechanisms of carotid stenosis was established.ResultsMeta-analysis showed that DD and II genotypes of ACE gene were associated with carotid stenosis. GO analysis showed that the main biological processes involved in ACE include: the process of transforming angiotensinogen into mature angiotensin; angiotensin’s mediation of the brain's response to alcohol consumption and thirst control; any chemical reaction involving the regulation of angiotensin; and the process of catalyzing the release of a C-terminal dipeptide from a polypeptide chain. A network of ACE gene regulation of carotid stenosis was constructed in combination with KEGG analysis.ConclusionThe ACE gene is a susceptibility gene for carotid stenosis. Through the functional annotation and pathway analysis of ACE gene, an ACE gene-involved carotid stenosis regulatory mechanisms network was constructed.  相似文献   

13.
Bid has multiple functions in apoptosis, survival, and proliferation. The role of Bid in etoposide-induced-DNA damage in HCC has not been investigated. Here, we report that p53-overexpression led to the notable up-regulation of the expression of Bid protein, whereas the acquired expression of Bid by PLC/PRF/5 cells dramatically decreased the p53 level. Upon the administration of a high dose of etoposide (causing irreparable damage), Bid sensitized cells to apoptosis. However, at a low dose of etoposide (repairable damage), Bid activated the S phase checkpoint through the up-regulation of p21 and p27, which are both p53-independent. While the unrepairable damage was being carried out, Bid was quickly translocated to the mitochondria to release cytochrome c into the cytosol, which activated caspases 9 and 3 and led to cell death. In conclusion, our study demonstrates that Bid both exhibits S phase checkpoint activation and plays a pro-apoptotic role in response to different degrees of etoposide-induced DNA damage in HCC cells. The elucidation of these intricate mechanisms of Bid points to the development of a possible therapeutic option that combines cytotoxic therapies to treat HCC.  相似文献   

14.
The hepatitis B virus core protein (HBc), also named core antigen, is well-known for its key role in viral capsid formation and virus replication. Recently, studies showed that HBc has the potential to control cell biology activity by regulating host gene expression. Here, we utilized miRNA microarray to identify 24 upregulated miRNAs and 21 downregulated miRNAs in HBc-expressed HCC cells, which were involved in multiple biological processes, including cell motility. Consistently, the in vitro transwell assay and the in vivo tail-vein injection model showed HBc promotion on HCC metastasis. Further, the miRNA-target gene network analysis displayed that the deleted in liver cancer (DLC-1) gene, an important negative regulator for cell motility, was potentially targeted by several differentially expressed miRNAs in HBc-introduced cells. Introduction of miRNAs mimics or inhibitors and 3′UTR luciferase activity assay proved that miR-382-5p efficiently suppressed DLC-1 expression and its 3′-UTR luciferase reporter activity. Importantly, cotransfection of miR-382-5p mimics/inhibitors and the DLC-1 expression vector almost abrogated HBc promotion on cell motility, indicating that the miR-382-5p/DLC-1 axis is important for mediating HBc-enhanced HCC motility. Clinical HCC samples also showed a negative correlation between miR-382-5p and DLC-1 expression level. Furthermore, HBc-positive HCC tissues showed high miR-382-5p level and reduced DLC-1 expression. In conclusion, our findings revealed that HBc promoted HCC motility by regulating the miR-382-5p/DLC-1 axis, which might provide a novel target for clinical diagnosis and treatment.  相似文献   

15.
为探究脓毒症休克与SIRS的差异表达基因及网络的构建,筛选潜在的核心基因,从GEO数据库下载相关基因表达谱GSE26378,数据分为脓毒症休克与SIRS各29个样本,通过在线软件GCBI对其进行标准化及差异基因筛选;对差异基因进行GO分析;基于KEGG进行功能通路分析以及基因信号网络分析;差异基因共表达网络分析。结果表明:两组中总共有1 456个基因被识别为差异基因(P0.05),与SIRS组相比,脓毒症休克组中有条859条下调基因,597条上调基因。GO功能富集分析显示差异基因主要参与了细胞周期、细胞免疫、细胞代谢。KEGG功能通路分析显示差异基因主要参与了MAPK信号通路、P53信号通路、wnt信号通路、细胞凋亡信号通路,细胞周期受体信号通路等。共表达分析发现基因CCNB1、NUSAP1、OIP5、SHCBP1、ZWINT、TOP2A、DLGAP5等位于网络中央部位,而基因信号网络分析发现基因PLCB1、PIK3CA、STAT3、CAMK2D、PRKCB、CREB1位于网络核心。基因芯片分析有助于发现脓毒症休克与SIRS患儿外周血单核细胞在转录组学上的改变,而生物信息学网络分析有助于发现潜在的靶点。  相似文献   

16.
17.
Summary Chronic infections with hepatitis B and C viruses (HBV and HCV) are etiologically linked to hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Both viruses may induce activation of nuclear factor-kappa B (NF-κB) in hepatocytes that plays a crucial role in the regulation of cell growth and apoptosis. Functional proteomics analysis of proteins associated with NF-κB signaling complexes in both viruses-related HCC tumor and non-tumor tissues may disclose possible common mechanisms in hepatocarcinogenesis. By functional proteomics, we analyzed proteins associated with NF-κB-signaling complexes in four-paired human HCC tumor and non-tumor tissues from HBV- and HCV-infected patients, respectively, and in one-paired tissue with dual viral infection. The quantity of NF-κB-associated proteins was semi-quantitatively measured by protein spot intensity on the gels of two-dimensional polyacrylamide gel electrophoresis. The results showed that overexpression of NF-κB-associated Wnt-1 protein in tumor part was detected in the␣majority of HBV- and HCV-infected HCC samples. These data suggest that enhanced expression of NF-κB-associated Wnt-1 protein might be a mechanism of hepatocarcinogenesis common to HBV- and HCV-infected patients. NF-κB signaling pathway and Wnt-1 protein could be potential targets for designing highly effective therapeutic agents in treating HCC and for chemoprevention of hepatocarcinogenesis.  相似文献   

18.
The limitations of revolutionary new mutation-specific inhibitors of BRAFV600E include the universal recurrence seen in melanoma patients treated with this novel class of drugs. Recently, our lab showed that simultaneous activation of the Wnt/β-catenin signaling pathway and targeted inhibition of BRAFV600E by PLX4720 synergistically induces apoptosis across a spectrum of BRAFV600E melanoma cell lines. As a follow-up to that study, treatment of BRAF-mutant and NRAS-mutant melanoma lines with WNT3A and the MEK inhibitor AZD6244 also induces apoptosis. The susceptibility of BRAF-mutant lines and NRAS-mutant lines to apoptosis correlates with negative regulation of Wnt/β-catenin signaling by ERK/MAPK signaling and dynamic decreases in abundance of the downstream scaffolding protein, AXIN1. Apoptosis-resistant NRAS-mutant lines can sensitize to AZD6244 by pretreatment with AXIN1 siRNA, similar to what we previously reported in BRAF-mutant cell lines. Taken together, these findings indicate that NRAS-mutant melanoma share with BRAF-mutant melanoma the potential to regulate apoptosis upon MEK inhibition through WNT3A and dynamic regulation of cellular AXIN1. Understanding the cellular context that makes melanoma cells susceptible to this combination treatment will contribute to the study and development of novel therapeutic combinations that may lead to more durable responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号