首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转化生长因子(TGF)-β超家族成员的重要生物学功能正日益引起人们的重视。受体介导的胞内信号转导研究近年有较大进展,特别是Smads蛋白介导的信号转导通路为阐明TGF-β超家族的作用机理提供了一条重要线索。TGF-β/Smads信号的转导受到机体严密的调控,并与其他信号通路存在着广泛的交叉对话效应。综述了对TGF-β/Smads信号转导通路的机制、调控,及其在维持机体正常生理功能和疾病发生中的作用的研究进展。  相似文献   

2.
3.
Transforming growth factor β isoforms (TGF-β) are among the most recently evolved members of a signaling superfamily with more than 30 members. TGF-β play vital roles in regulating cellular growth and differentiation, and they signal through a highly restricted subset of receptors known as TGF-β type I receptor (TβR-I) and TGF-β type II receptor (TβR-II). TGF-β's specificity for TβR-I has been proposed to arise from its pre-helix extension, a five-residue loop that binds in the cleft between TGF-β and TβR-II. The structure and backbone dynamics of the unbound form of the TβR-I extracellular domain were determined using NMR to investigate the extension's role in binding. This showed that the unbound form is highly similar to the bound form in terms of both the β-strand framework that defines the three-finger toxin fold and the extension and its characteristic cis-Ile54-Pro55 peptide bond. The NMR data further showed that the extension and two flanking 310 helices are rigid on the nanosecond-to-picosecond timescale. The functional significance of several residues within the extension was investigated by binding studies and reporter gene assays in cultured epithelial cells. These demonstrated that the pre-helix extension is essential for binding, with Pro55 and Pro59 each playing a major role. These findings suggest that the pre-helix extension and its flanking prolines evolved to endow the TGF-β signaling complex with its unique specificity, departing from the ancestral promiscuity of the bone morphogenetic protein subfamily, where the binding interface of the type I receptor is highly flexible.  相似文献   

4.
Lin F  Yang X 《遗传学报》2010,37(9):583-591
Aortic aneurysm(AA)is a common health problem with high mortality and no effective drugs.Transforming growth factor-β (TGF-β)superfamily members regulate various cellular processes,and TGF-β signaling has key roles in development,tissue homeostasis, and diseases.Interest in the role of TGF-β signaling in the pathogenesis of AAs has recently emerged,particularly since genetic studies demonstrated an association between gene mutations in components of TGF-β signaling and AAs. However, paradoxical discoveries have implicated dysregulated TGF-β signaling in aneurysm formation,complicating the precise functional role for TGF-β in aneurysm development and progression. Furthermore, interventions targeting towards TGF-β signaling using losartan, which may represent a suitable therapeutic option for AAs, were subject to skepticism especially because of conflicting experimental results obtained from TGF-β antibody treatment without knowledge of the underlying mechanism.We propose a TGF-β aneurysm paradox,which would provide a good opportunity for the development of genetic mouse models of AA.These models would be used to clarify the mechanisms underlying TGF-β signaling, which would translate into novel pharmacologic therapies based on the new molecular discoveries.  相似文献   

5.
TGF-β superfamily signals play complex roles in regulation of tissue repair and inflammation in mammals [1]. Drosophila melanogaster is a well-established model for the study of innate immune function [2, 3] and wound healing [4-7]. Here, we explore the role and regulation of two TGF-β superfamily members, dawdle and decapentaplegic (dpp), in response to wounding and infection in adult Drosophila. We find that both TGF-β signals exhibit complex regulation in response to wounding and infection, each is expressed in a subset of phagocytes, and each inhibits a specific arm of the immune response. dpp is rapidly activated by wounds and represses the production of antimicrobial peptides; flies lacking dpp function display persistent, strong antimicrobial peptide expression after even a small wound. dawdle, in contrast, is activated by Gram-positive bacterial infection but repressed by Gram-negative infection or wounding; its role is to limit infection-induced melanization. Flies lacking dawdle function exhibit melanization even when uninfected. Together, these data imply a model in which the bone morphogenetic protein (BMP) dpp is an important inhibitor of inflammation following sterile injury whereas the activin-like dawdle determines the nature of the induced immune response.  相似文献   

6.
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells.Transforming growth factor β(TGF-β) family is a superfamily of growth factors,including TGF-β1,TGF-β2 and TGF-β3,bone morphogenetic proteins,activin/inhibin,and some other cytokines such as nodal,which plays very important roles in regulating a wide variety of biological processes,such as cell growth,differentiation,cell death.TGF-β,a pleiotropic cytokine,has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells,through the Smad pathway,non-Smad pathways including mitogen-activated protein kinase pathways,phosphatidylinositol-3-kinase/AKT pathways and Rholike GTPase signaling pathways,and their cross-talks.For instance,it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells,immature cardiomyocytes,chondrocytes,neurocytes,hepatic stellate cells,Th17 cells,and dendritic cells.However,TGF-β inhibits the differentiation of stem cells into myotubes,adipocytes,endothelial cells,and natural killer cells.Additionally,TGF-β can provide competence for early stages of osteoblastic differentiation,but at late stages TGF-β acts as an inhibitor.The three mammalian isoforms(TGF-β1,2 and 3) have distinct but overlapping effects on hematopoiesis.Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology,and will facilitate both basic research and clinical applications of stem cells.In this article,we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.  相似文献   

7.
The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization.  相似文献   

8.
We have previously shown that recombinant human osteogenic protein-1 (rhOP-1), a bone morphogenetic protein member of the TGF-β superfamily, can induce new bone formation when implanted with an appropriate carrier at subcutaneous sites in rats and can restore completely large diaphyseal segmental defects in laboratory animals. The role of OP-1 in the early events of bone induction viz, chemotaxis of phagocytic leukocytes, and fibroblastic mesenchymal cells is currently unknown. In the present study, we examined the effect of rhOP-1 on chemotaxis of phagocytic leukocytes (human neutrophils and monocytes) and fibroblastic mesenchymal cells (infant foreskin fibroblasts). Since OP-1 is structurally related to TGF-β1, we assessed the effects of OP-1 on several other fibroblast functions (in addition to chemotaxis) known to be modulated by TGF-β1. Our results demonstrated that rhOP-1, like TGF-β1, is a potent chemoattractant for human neutrophils, monocytes, and fibroblasts. However, in contrast to TGF-β1, OP-1 does not to stimulate fibroblast mitogenesis, matrix synthesis [collagen and hyaluronic acid (hyaluronan)], or production of tissue inhibitor of metalloproteinase (TIMP), i.e., fibroblast functions associated with fibrogenesis. These results clearly demonstrate a dichotomy between these two members of the TGF-β superfamily with regard to fibrogenic effects on fibroblasts but a similarity in their chemotactic properties. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
Epithelial to mesenchymal transition (EMT) is a process in which fully differentiated epithelial cells lose many of their epithelial characteristics and adopt features typical of mesenchymal cells, thus allowing cells to become migratory and invasive. EMT is a critical process in development and its role in cancer and fibrosis is becoming increasingly recognised. It is also becoming apparent that EMT is not just restricted to embryonic development and disease in adults, but in fact may be an important process for the maintenance and regeneration of adult tissue architecture. While transforming growth factor-β (TGF-β) is considered a prototypic inducer of EMT, relatively little is known about other signalling molecules that regulate EMT. Bone morphogenic proteins (BMPs) are members of the TGF-β superfamily and 20 different human BMPs have been identified. Originally named for their effects on bone, these proteins are now considered to be key morphogenetic signals that orchestrate tissue architecture throughout the body. BMP2, -4 and -7 are the best studied to date. There are disparate reports of the roles of BMPs in EMT during development, cancer and fibrosis. Here, we present an overview of this literature as well as the emerging role of EMT in tissue regeneration and the involvement of BMPs in regulating this process.  相似文献   

11.
转化生长因子TGF-β超家族是一类在结构上相关的蛋白,目前发现在哺乳动物中有超过30多个细胞因子可能属于这一超家族。它们在各类细胞中广泛参与细胞生长、黏附、迁移、分化及凋亡等过程。其中抑制型Smad(I-Smads,包括Smad6和Smad7)是TGF-β/BMP信号通路里重要的抑制型蛋白,在多种细胞与组织的发育过程以及疾病的发生过程中扮演着重要的角色。对其研究已经过10多年,取得许多重大的进展,但也还有很多重要的问题还没有解决。着重介绍I-Smads对TGF-β信号通路的负调控研究进展。  相似文献   

12.
Transforming growth factor β (TGF-β) is part of the transforming growth factor β superfamily which is involved in many physiological processes and closely related to the carcinogenesis. Here, we discuss the TGF-β structure, function, and its canonical Smads signaling pathway. Importantly, TGF-β has been proved that it plays both tumor suppressor as well as an activator role in tumor progression. In an early stage, TGF-β inhibits cell proliferation and is involved in cell apoptosis. In an advanced tumor, TGF-β signaling pathway induces tumor invasion and metastasis through promoting angiogenesis, epithelial–mesenchymal transition, and immune escape. Furthermore, we are centered on updated research results into the inhibitors as drugs which have been studied in preclinical or clinical trials in tumor carcinogenesis to prevent the TGF-β synthesis and block its signaling pathways such as antibodies, antisense molecules, and small-molecule tyrosine kinase inhibitors. Thus, it is highlighting the crucial role of TGF-β in tumor therapy and may provide opportunities for the new antitumor strategies in patients with cancer.  相似文献   

13.
We have characterized a 60-kDa transforming growth factor-β (TGF-β) binding protein that was originally identified on LNCaP adenocarcinoma prostate cells by affinity cross-linking of cell surface proteins by using 125I-TGF-β1. Binding of 125I-TGF-β1 to the 60-kDa protein was competed by an excess of unlabeled TGF-β1 but not by TGF-β2, TGF-β3, activin, or osteogenic protein-1 (OP-1), also termed bone morphogenetic protein-7 (BMP-7). In addition, no binding of 125I-TGF-β2 and 125I-TGF-β3 to the 60-kDa binding protein on LNCaP cells could be demonstrated by using affinity labeling techniques. The 60-kDa TGF-β binding protein showed no immunoreactivity with antibodies against the known type I and type II receptors for members of the TGF-β superfamily. Treatment of LNCaP cells with 0.25 M NaCl, 1 μg/ml heparin, or 10% glycerol caused a release of the 60-kDa protein from the cell surface. In addition, we found that the previously described TGF-β type IV receptor on GH3 cells, which does not form a heteromeric complex with TGF-β receptors, could be released from the cell surface by these same treatments. This suggests that the 60-kDa protein and the similarly sized TGF-β type IV receptor are related proteins. The eluted 60-kDa LNCaP protein was shown to interfere with the binding of TGF-β to the TGF-β receptors. Thus, the cell surface-associated 60-kDa TGF-β binding protein may play a role in regulating TGF-β binding to TGF-β receptors. J. Cell. Physiol. 173:447–459, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Huang Z  Chen X  Chen D 《Cellular signalling》2011,23(9):1441-1446
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a critical autocrine/paracrine inhibitor of skeletal muscle growth. Since the first observed double-muscling phenotype was reported in myostatin-null animals, a functional role of myostatin has been demonstrated in the control of skeletal muscle development. However, beyond the confines of its traditional role in muscle growth inhibition, myostatin has recently been shown to play an important role in metabolism. During the past several years, it has been well established that Smads are canonical mediators of signals for myostatin from the receptors to the nucleus. However, growing evidence supports the notion that Non-Smad signal pathways also participate in myostatin signaling. Myostatin expression is increased in muscle atrophy and metabolic disorders, suggesting that changes in endogenous expression of myostatin may provide therapeutic benefit for these diseases. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively regulate gene expression and recent evidence has accumulated supporting a role for miRNAs in the regulation of myostatin expression. This review highlights some of these areas in myostatin research: a novel role in metabolism, signal pathways, and miRNA-mediated expression regulation.  相似文献   

15.
转化生长因子-β(transforming growth factor-β,TGF-β)受体Ⅲ,又称为β蛋白聚糖(betaglycan),是一种膜锚定蛋白。TGF-β受体Ⅲ是表达最为丰富的TGF-β受体,曾被认为是TGF-β超家族(包括TGF-β、激活素和抑制素等)的辅助受体。后来研究表明,它在介导和调节TGF-β的信号转导中具有非常重要的、不可替代的作用。它通过与TGF-β形成复合体来介导对靶细胞的作用。在没有TGF配体的情况下,TGF-β受体Ⅲ可以激活p38信号,表明这一受体可能与不依赖TGF-β的信号通路相互作用。TGFβ受体Ⅲ还可以结合并调节抑制素的信号转导。TGFβ受体Ⅲ与抑制素A结合,形成一个稳定的高亲和复合物。体外研究表明,TGFβ受体III还结合抑制素B和强化抑制素与Ⅱ型激活素受体的关系。有关报道显示TGFβ受体Ⅲ在卵巢癌中具有肿瘤抑制的作用。研究表明,在上皮源性卵巢癌中,TGFβ受体Ⅲ mRNA和蛋白质表达降低或丢失,丢失的程度与肿瘤分级相关。有很多因素可以影响并调节该受体的表达,如雌激素、卵泡刺激素(FSH)、TGF-β1等,深入开展相关机制的研究,对于癌症的治疗和预防将会起到一定的推动作用。  相似文献   

16.
Fibrillins constitute a family of large extracellular glycoproteins which multimerize to form microfibrils, an important structure in the extracellular matrix. It has long been assumed that fibrillin-2 was barely present during postnatal life, but it is now clear that fibrillin-2 molecules form the structural core of microfibrils, and are masked by an outer layer of fibrillin-1. Mutations in fibrillins give rise to heritable connective tissue disorders, including Marfan syndrome and congenital contractural arachnodactyly. Fibrillins also play an important role in matrix sequestering of members of the transforming growth factor-β family, and in context of Marfan syndrome excessive TGF-β activation has been observed. TGF-β activation is highly dependent on integrin binding, including integrin αvβ8 and αvβ6, which are upregulated upon TGF-β exposure. TGF-β is also involved in tumor progression, metastasis, epithelial-to-mesenchymal transition and tumor angiogenesis. In several highly vascularized types of cancer such as hepatocellular carcinoma, a positive correlation was found between increased TGF-β plasma concentrations and tumor vascularity. Interestingly, fibrillin-1 has a higher affinity to TGF-β and, therefore, has a higher capacity to sequester TGF-β compared to fibrillin-2. The previously reported downregulation of fibrillin-1 in tumor endothelium affects the fibrillin-1/fibrillin-2 ratio in the microfibrils, exposing the normally hidden fibrillin-2. We postulate that fibrillin-2 exposure in the tumor endothelium directly stimulates tumor angiogenesis by influencing TGF-β sequestering by microfibrils, leading to a locally higher active TGF-β concentration in the tumor microenvironment. From a therapeutic perspective, fibrillin-2 might serve as a potential target for future anti-cancer therapies.  相似文献   

17.
TGF-β has been implicated in the proliferation and differentiation of chondrocytes and osteoblasts. However, the in vivo function of TGF-β in skeletal development is unclear. In this study, we investigated the role of TGF-β signaling in growth plate development by creating mice with a conditional knockout of the TGF-β type I receptor ALK5 (ALK5CKO) in skeletal progenitor cells using Dermo1-Cre mice. ALK5CKO mice had short and wide long bones, reduced bone collars, and trabecular bones. In ALK5CKO growth plates, chondrocytes proliferated and differentiated, but ectopic cartilaginous tissues protruded into the perichondrium. In normal growth plates, ALK5 protein was strongly expressed in perichondrial progenitor cells for osteoblasts, and in a thin chondrocyte layer located adjacent to the perichondrium in the peripheral cartilage. ALK5CKO growth plates had an abnormally thin perichondrial cell layer and reduced proliferation and differentiation of osteoblasts. These defects in the perichondrium likely caused the short bones and ectopic cartilaginous protrusions. Using tamoxifen-inducible Cre-ER™-mediated ALK5-deficient primary calvarial cell cultures, we found that TGF-β signaling promoted osteoprogenitor proliferation, early differentiation, and commitment to the osteoblastic lineage through the selective MAPKs and Smad2/3 pathways. These results demonstrate the important roles of TGF-β signaling in perichondrium formation and differentiation, as well as in growth plate integrity during skeletal development.  相似文献   

18.
19.
Transforming growth factor β (TGF-β) superfamily ligands have important roles in regulating cellular homeostasis, embryonic development, differentiation, proliferation, immune surveillance, angiogenesis, motility, and apoptosis in a cell type and context specific manner. TGF-β superfamily signaling pathways also have diverse roles in human cancer, functioning to either suppress or promote cancer progression. The TGF-β superfamily co-receptor, the type III TGF-β receptor (TβRIII, also known as betaglycan) mediates TGF-β superfamily ligand dependent as well as ligand independent signaling to both Smad and non-Smad signaling pathways. Loss of TβRIII expression during cancer progression and direct effects of TβRIII on regulating cell migration, invasion, proliferation, and angiogenesis support a role for TβRIII as a suppressor of cancer progression and/or as a metastasis suppressor. Defining the physiological function and mechanism of TβRIII action and alterations in TβRIII function during cancer progression should enable more effective targeting of TβRIII and TβRIII mediated functions for the diagnosis and treatment of human cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号