首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (?113.655 kJ/mol) had better binding compared to Cmp19 (?95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.  相似文献   

2.
Abstract

Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5′-CCTATATCC-3′ in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis -diammine Pt(II)- bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5′-CCTATATCC-3′ (I), 5′-CCTTAATCC-3′ (II), 5′-CCTTATTCC-3′ (III), 5′-CCTTTTTCC-3′ (IV) and 5′-CCAATTTCC-3′ (V) decreases in the order I = II > III > IV> V. The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

3.
Abstract

For efficient designing of metallodrugs, it is imperative to analyse the binding affinity of those drugs with drug-carrying serum albumins to comprehend their structure–activity correlation for biomedical applications. Here, cobalt(II) and cobalt(III) complexes comprising three phendione ligands, [Co(phendione)3]Cl2 (1) and [Co(phendione)3]Cl3 (2), where, phendione = 1,10-phenanthroline-5,6-dione, has been chosen to contrast the impact of their hydrophobicity and ionicity on binding with bovine serum albumin (BSA) through spectrophotometric titrations. The attained hydrophobicity values using octanol/water partition coefficient method manifested that complex 1 is more hydrophobic than complex 2, which could be attributed to lesser charge on its coordination sphere. The interaction of complexes 1 and 2 with BSA using steady state fluorescence studies revealed that these complexes quench the intrinsic fluorescence of BSA through static mechanism, and the extent of quenching and binding parameters are higher for complex 2. Further thermodynamics of BSA-binding studies revealed that complexes 1 and 2 interact with BSA through hydrophobic and hydrogen bonding/van der Waals interactions, respectively. Further, UV–visible absorption, circular dichroism and synchronous fluorescence studies confirmed the occurrence of conformational and microenvironmental changes in BSA upon binding with complexes 1 and 2. Molecular docking studies have also shown that complex 2 has a higher binding affinity towards BSA as compared to complex 1. This sort of modification of ionicity and hydrophobicity of metal complexes for getting desirable binding mode/strength with drug transporting serum albumins will be a promising pathway for designing active and new kind of metallodrugs for various biomedical applications.

Communicated by Ramaswamy H. Sarma  相似文献   

4.
Insomnia is a prominent modern disease that affects an increasing population. Undesirable side effects of commercial drugs highlight the need to develop novel insomnia drugs. Virtual screening of traditional chinese medicine Database@Taiwan (TCM Database@Taiwan) identified 2-O-Caffeoyl tartaric acid (1), 2-O-Feruloyl tartaric acid (2), and Mumefural (3) as potential agonists for both gamma-amino butyric acid (GABA) or benzodiazepine (BZ) binding sites. The TCM candidates exhibited higher affinity than GABA and Zolpidem, a phenomenon that could be attributed to higher quantity of stabilizing H-bonds. Efficacy profiles using support vector machines and pharmacophore contour also suggest drug potential of the TCM candidates. Fragments added to the de novo derivatives 3a, 3b, 3c for GABA binding site, and 1a, 2a, and 3d for BZ binding site contributed to new binding sites and structural stability, further optimizing binding to GABA or BZ binding sites. Increased opening of the ion channel by candidate ligands provide strong support for their potential biological functions. The dual binding properties of the TCM candidates present a unique opportunity to develop twin-targeting drugs with less side effects. Derivative structures can be used as starting points for developing high affinity GABAA receptor agonists with specificity towards GABA binding site and BZ binding site.  相似文献   

5.
An orthogonally positioned diamino/dicationic polyamide f-IPI 2 was synthesized. It has enhanced binding affinity, and it showed comparable sequence specificity to its monoamino/monocationic counterpart f-IPI 1. Results from CD and DNase I footprinting studies confirmed the minor groove binding and selectivity of polyamides 1 and 2 for the cognate sequence 5′-ACGCGT-3′. SPR studies provided their binding constants: 2.4 × 108 M−1 for diamino 2, which is ∼4 times higher than 5.4 × 107 M−1 for its monoamino analogue 1.  相似文献   

6.
Kun Sha 《Molecular simulation》2015,41(18):1553-1561
The heat shock protein 90 (Hsp90) represents a new avenue for cancer therapy. A novel benzolactam inhibitor, compound 31, showed a great selectivity for Hsp90α and Hsp90β against Grp94. However, the structural basis for the great selectivity of compound 31 for Hsp90α/β versus Grp94 remains poorly understood. In this study, we carried out molecular docking, molecular dynamics simulations and binding free energy calculations (MM-GBSA) to address the isoform selective property. Molecular docking studies indicated the different binding modes of the Hsp90 and Grp94 with compound 31. The MM-GBSA calculations revealed that the hydrophobic interactions between compound 31 and proteins contributed the most to the binding affinity and the Grp94/compound 31 complex could result in a less energy-favourable complex compared with the Hsp90α/compound 31 and the Hsp90β/compound 31 complexes. This may render the weak binding of compound 31 to the Grp94. This study may be helpful for the future design of novel and selective Hsp90 inhibitors.  相似文献   

7.
BackgroundThe analysis of the thermodynamic driving forces of ligand-protein binding has been suggested to be a key component for the selection and optimization of active compounds into drug candidates. The binding enthalpy as deduced from isothermal titration calorimetry (ITC) is usually interpreted assuming single-step binding of a ligand to one conformation of the target protein. Although successful in many cases, these assumptions are oversimplified approximations of the reality with flexible proteins and complicated binding mechanism in many if not most cases. The relationship between protein flexibility and thermodynamic signature of ligand binding is largely understudied.MethodsDirected mutagenesis, X-ray crystallography, enzyme kinetics and ITC methods were combined to dissect the influence of loop flexibility on the thermodynamics and mechanism of ligand binding to histone deacetylase (HDAC)-like amidohydrolases.ResultsThe general ligand-protein binding mechanism comprises an energetically demanding gate opening step followed by physical binding. Increased flexibility of the L2-loop in HDAC-like amidohydrolases facilitates access of ligands to the binding pocket resulting in predominantly enthalpy-driven complex formation.ConclusionsThe study provides evidence for the great importance of flexibility adjacent to the active site channel for the mechanism and observed thermodynamic driving forces of molecular recognition in HDAC like enzymes.General significanceThe flexibility or malleability in regions adjacent to binding pockets should be given more attention when designing better drug candidates. The presented case study also suggests that the observed binding enthalpy of protein-ligand systems should be interpreted with caution, since more complicated binding mechanisms may obscure the significance regarding potential drug likeness.  相似文献   

8.
3-(4-Fluorophenyl)-N-((4-fluorophenyl)sulphonyl)acrylamide (FFSA) is a potential tubulin polymerisation inhibitor. In this article, a theoretical study of the binding between FFSA and tubulin in colchicine site was carried out by molecular docking, molecular dynamics (MD) simulation and binding free energy calculations. The docking calculations preliminarily indicate that there are three possible binding modes 1, 2 and 3; MD simulations and binding free energy calculations identify that binding mode 2 is the most favourable, with the lowest binding free energy of ? 29.54 kcal/mol. Moreover, our valuable results for the binding are as follows: the inhibitor FFSA is suitably located at the colchicine site of tubulin, where it not only interacts with residues Leu248β, Lys254β, Leu255β, Lys352β, Met259β and Val181a by hydrophilic interaction, but also interacts with Val181α and Thr179α by hydrogen bond interaction. These two factors are both essential for FFSA strongly binding to tubulin. These theoretical results help understanding the action mechanism and designing new compounds with higher affinity to tubulin.  相似文献   

9.
BackgroundCharacterizing the thermodynamic parameters behind metal-biomolecule interactions is fundamental to understanding the roles metal ions play in biology. Isothermal Titration Calorimetry (ITC) is a “gold-standard” for obtaining these data. However, in addition to metal-protein binding, additional equilibria such as metal-buffer interactions must be taken into consideration prior to making meaningful comparisons between metal-binding systems.MethodsIn this study, the thermodynamics of Ca2+ binding to three buffers (Bis-Tris, MES, and MOPS) were obtained from Ca2+-EDTA titrations using ITC. These data were used to extract buffer-independent parameters for Ca2+ binding to human cardiac troponin C (hcTnC), an EF-hand containing protein required for heart muscle contraction.ResultsThe number of protons released upon Ca2+ binding to the C– and N-domain of hcTnC were found to be 1.1 and 1.2, respectively. These values permitted determination of buffer-independent thermodynamic parameters of Ca2+-hcTnC binding, and the extracted data agreed well among the buffers tested. Both buffer and pH-adjusted parameters were determined for Ca2+ binding to the N-domain of hcTnC and revealed that Ca2+ binding under aqueous conditions and physiological ionic strength is both thermodynamically favorable and driven by entropy.ConclusionsTaken together, the consistency of these data between buffer systems and the similarity between theoretical and experimental proton release is indicative of the reliability of the method used and the importance of extracting metal-buffer interactions in these studies.General significanceThe experimental approach described herein is clearly applicable to other metal ions and other EF-hand protein systems.  相似文献   

10.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

11.
1. The bark of the root and stem of various Magnolia species has been used in Traditional Chinese Medicine to treat a variety of disorders including anxiety and nervous disturbances. The biphenolic compounds honokiol (H) and magnolol (M), the main components of the Chinese medicinal plant Magnolia officinalis, interact with GABAA receptors in rat brain in vitro. We compared the effects of H and M on [3H]muscimol (MUS) and [3H]flunitrazepam (FNM) binding using EDTA/water dialyzed rat brain membranes in a buffer containing 150 mM NaCl plus 5 mM Tris-HCl, pH 7.5 as well as [35S]t-butylbicyclophosphorothionate (TBPS) in 200 mM KBr plus 5 mM Tris-HCl, pH 7.5. H and M had similar enhancing effects on [3H]MUS as well as on [3H]FNM binding to rat brain membrane preparations, but H was 2.5 to 5.2 times more potent than M. 2. [ 3 H]FNM binding. GABA alone almost doubled [3H]FNM binding with EC50 = 450 nM and 200 nM using forebrain and cerebellar membranes, respectively. In the presence of 5 M H or M the EC50 values for GABA were decreased to 79 and 89 nM, respectively, using forebrain, and 39 and 78 nM, using cerebellar membranes. H and M potently enhanced the potentiating effect of 200 nM GABA on [3H]FNM binding with EC50 values of 0.61 M and 1.6 M using forebrain membranes, with maximal enhancements of 33 and 47%, respectively. Using cerebellar membranes, the corresponding values were 0.25 and 1.1 M, and 22 and 34%. 3. [ 3 H]MUS binding. H and M increased [3H]MUS binding to whole forebrain membranes about 3-fold with EC50 values of 6.0 and 15 M. Using cerebellar membranes, H and M increased [3H]MUS binding ~68% with EC50 values of 2.3 and 12 M, respectively. Scatchard analysis revealed that the enhancements of [3H]MUS binding were due primarily to increases in the number of binding sites (Bmax values) with no effect on the high affinity binding constants (Kd values). The enhancing effect of H and M were not additive. 4. [ 35 S]TBPS binding. H and M displaced [35S]TBPS binding from sites on whole rat forebrain membranes with IC50 values of 7.8 and 6.0 M, respectively. Using cerebellar membranes, the corresponding IC50 values were 5.3 and 4.8 M. These inhibitory effects were reversed by the potent GABAA receptor blocker R5135 (10 nM), suggesting that H and M allosterically increase the affinity of GABAA receptors for GABA and MUS by binding to sites in GABAA receptor complexes. 5. Two monophenols, the anesthetic propofol (2,6-diisopropylphenol, P) and the anti-inflammatory diflunisal (2,4-difluoro-4-hydroxy-3-biphenyl carboxylic acid, D) also enhanced [3H]MUS binding, decreased the EC50 values for GABA in enhancing [3H]FNM binding and potentiated the enhancing effect of 200 nM GABA on [3H]FNM binding, although enhancements of [3H]MUS binding for these monophenols were smaller than those for H and M, using forebrain and cerebellar membranes. The enhancing effect of P and D on [3H]MUS binding were almost completely additive. 2,2-biphenol was inactive on [3H]MUS and [3H]FNM binding. These, and other preliminary experiments, suggest that appropriate ortho (C2) and para (C4) substitution increases the GABA-potentiating activity of phenols. 6. The potentiation of GABAergic neurotransmission by H and M is probably involved in their previously reported anxiolytic and central depressant effects.  相似文献   

12.
Sun Q  Ng C  Guy GR  Sivaraman J 《FEBS letters》2011,(2):281-285
Previously, we have demonstrated that the tyrosine phosphorylated hepatocyte growth factor receptor (Met) binds to the c-Cbl phosphotyrosine-recognition, tyrosine kinase binding (TKB) domain in a reverse orientation compared to other c-Cbl binding partners. A Met peptide with the DpYR motif changed to RpYD (MetRD) retains a similar TKB binding affinity as the native Met peptide. However, the TKB: MetRD complex crystal structure reveals a complete reversal of the binding orientation. Collated data indicates that both binding and orientation is dictated by the phosphorylated tyrosine and an adjacent arginine forming intra-peptide hydrogen bonds and aligning unidirectionally with complementary charges in the phosphotyrosine binding pocket of c-Cbl.

Structured summary

c-Cbl and MetRDbind: shown by x-ray crystallography (view interaction)c-Cbl and MetRDbind: shown by mass spectrometry studies of complexes (view interaction)c-Cblbind to Met: shown by surface plasmon resonance (view interactions 1,2)  相似文献   

13.
We have studied the binding interactions of biologically important carbohydrates (d-glucose, d-xylose and d-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu2(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn2(hpnbpda)(μ-OAc)] (2) [H3hpnbpda = N,N′-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N′-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H3hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV–vis and 13C NMR spectroscopic techniques. UV–vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV–vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in 13C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.  相似文献   

14.
The nature of the H-bonds between the human protein HLA-DR1 (DRB*0101) and the hemagglutinin peptide HA306-318 has been studied using the Quantum Theory of Atoms in Molecules for the first time. We have found four H-bond groups: one conventional CO··HN bond group and three nonconventional CO··HC, π··HC involving aromatic rings and HN··HCaliphatic groups. The calculated electron density at the determined H-bond critical points suggests the follow protein pocket binding trend: P1 (2,311) >> P9 (1.109) > P4 (0.950) > P6 (0.553) > P7 (0.213) which agrees and reveal the nature of experimental findings, showing that P1 produces by a long way the strongest binding of the HLA-DR1 human protein molecule with the peptide backbone as consequence of the vast number of H-bonds in the P1 area and at the same time the largest specific binding of the peptide Tyr308 residue with aromatic residues located at the binding groove floor. The present results suggest the topological analysis of the electronic density as a valuable tool that allows a non-arbitrary partition of the pockets binding energy via the calculated electron density at the determined critical points.  相似文献   

15.
BackgroundFor a large number of conopeptides basic knowledge related to structure-activity relationships is unavailable although such information is indispensable with respect to drug development and their use as drug leads.MethodsA combined experimental and theoretical approach employing electrophysiology and molecular modeling was applied for identifying the conopeptide δ-EVIA binding site at voltage-gated Na+ channels and to gain insight into the toxin's mode of action.ResultsConopeptide δ-EVIA was synthesized and its structure was re-determined by NMR spectroscopy for molecular docking studies. Molecular docking and molecular dynamics simulation studies were performed involving the domain IV voltage sensor in a resting conformation and part of the domain I S5 transmembrane segment. Molecular modeling was stimulated by functional studies, which demonstrated the importance of domains I and IV of the neuronal NaV1.7 channel for toxin action.Conclusionsδ-EVIA shares its binding epitope with other voltage-sensor toxins, such as the conotoxin δ-SVIE and various scorpion α-toxins. In contrast to previous in silico toxin binding studies, we present here in silico binding studies of a voltage-sensor toxin including the entire toxin binding site comprising the resting domain IV voltage sensor and S5 of domain I.General significanceThe prototypical voltage-sensor toxin δ-EVIA is suited for the elucidation of its binding epitope; in-depth analysis of its interaction with the channel target yields information on the mode of action and might also help to unravel the mechanism of voltage-dependent channel gating and coupling of activation and inactivation.  相似文献   

16.
L-Fucose-specific lectin produced by Streptomyces no. 16-3 (SFL 16-3) was labeled with N- succinimidyl-[2, 3-3H]-propionate to quantitatively investigate its binding to human erythrocytes. The binding inhibition by sugars was competitive, and 5mM L-fucose or 20 mM d-mannose completely inhibited the binding. Among plant lectins, Lotus tetragonolobus, Ulex europeus I, soybean and wheat germ lectin showed competitive inhibition. The association constant and the average number of binding sites for human blood group O erythrocytes were approximately 3 × 107 M-1 and 1 × 106 cell-1, respectively. Trypsinization of erythrocytes preferentially increased the number of binding sites for human A and B erythrocytes but not for O erythrocytes.

Membrane components were extracted from human B and O erythrocytes and their binding activity for SFL 16-3 was tested using the hemagglutination-inhibition assay. Poly(glycosyl)-ceramide was the predominant receptor and its fucosyl residue was essential for binding. The crude glycoprotein fraction showed only slight inhibition activity.  相似文献   

17.
Since the human body for many reasons can adapt and become resistant to drugs, it is important to develop and validate computer aided drug design (CADD) methods that could help predict binding affinity changes that can result from these resistant enzymes. The free energy perturbation (FEP) methodology is the most accurate means of estimating relative binding affinities between inhibitors and protein variants. In this paper, we describe the role played by hydrophobic residues lining the active site region, particularly 79 Ile and 176 Phe, in the binding of methotrexate to the Escherichia coli (E. coli) thymidylate synthase (TS) enzyme, using the thermodynamic cycle perturbation (TCP) approach. The computed binding free energy differences on the binding of methotrexate to the native and some mutant E. coli TS structures have been compared with experimental results. Computationally, four different ‘mutations’ have been simulated on the TS enzyme with methotrexate (MTX): 79 Ile →  79 Val; 79 Ile → 79 Ala; 79 Ile → 79 Leu; and 176 Phe →  176 Ile. The calculated results indicate that in each of these cases, the native residues ( 79 Ile and 176 Phe) interact more favorably with methotrexate than the mutant residues and these results are corroborated by experimental measurements. Binding preference to wild type residues can be rationalized in terms of their better hydrophobic contacts with the phenyl ring of methotrexate.  相似文献   

18.
Two new Palladium(II) isomeric complexes, [Pd (Gly)(Leu)](I) and [Pd (Gly)(Ile)](II), where Gly is glycine, and Leu and Ile are isomeric amino acids (leucine and isoleucine), have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, and UV–Vis. The complexes have been tested for their In vitro cytotoxicity against cancer cell line K562 and their binding properties to calf thymus DNA (CT-DNA) and human serum albumin (HSA) have also been investigated by multispectroscopic techniques. Interactions of these complexes with CT-DNA were monitored using gel electrophoresis. The energy transfer from HSA to these complexes and the binding distance between HSA and the complexes (r) were calculated. The results obtained from these studies indicated that at very low concentrations, both complexes effectively interact with CT-DNA and HSA. Fluorescence studies revealed that the complexes strongly quench DNA bound ethidium bromide as well as the intrinsic fluorescence of HSA through the static quenching procedures. Binding constant (Kb), apparent biomolecular quenching constant (kq), and number of binding sites (n) for CT-DNA and HSA were calculated using Stern–Volmer equation. The calculated thermodynamic parameters indicated that the hydrogen binding and vander Waals forces might play a major role in the interaction of these complexes with HSA and DNA. Thus, we propose that the complexes exhibit the groove binding with CT-DNA and interact with the main binding pocket of HSA. The complexes follow the binding affinity order of I > II with DNA- and II > I with HSA-binding.  相似文献   

19.
BackgroundThermodynamic and binding kinetic data increasingly support and guide the drug optimization process.MethodsBecause ITC thermograms contain binding thermodynamic and kinetic information, an efficient protocol for the simultaneous extraction of thermodynamic and kinetic data for 1:1 protein ligand reactions from AFFINImeter kinITC in one single experiment are presented.ResultsThe effort to apply this protocol requires the same time as for the standard protocol but increases the precision of both thermodynamic and kinetic data.ConclusionsThe protocol enables reliable extraction of both thermodynamic and kinetic data for 1:1 protein-ligand binding reactions with improved precision compared to the ‘standard protocol’.General significanceThermodynamic and kinetic data are recorded under exactly the same conditions in solution without any labeling or immobilization from a protein sample that is not 100% active and would otherwise render the extraction of kinetic parameters impossible.  相似文献   

20.
BackgroundThe guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified.MethodsTo search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1.ResultsUsing the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins.ConclusionIn mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner.General significanceThis is the first report describing a specific GRSF1 binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号