首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilization of membrane receptor for epidermal growth factor.   总被引:7,自引:0,他引:7  
G Carpenter 《Life sciences》1979,24(18):1691-1697
The membrane receptor for epidermal growth factor (EGF) has been solubilized from A-431 tumor cells using Triton X-100. Operational criteria used to define solubilization include failure of the binding activity to be pelleted after centrifugation at 90,000 x g for 1.5 hrs and the requirement for polyethylene glycol precipitation to detect 125I-EGF: receptor complexes on membrane filters. Properties of the solubilized EGF are characterized and compared to the properties of the particulate receptor. The specific binding capacity of the solubilized EGF receptor was 8.0 picomoles 125I-EGF bound per mg protein--approximately 60% of the binding capacity of particulate receptor preparations. Also, solubilization of the EGF receptor resulted in a 10-fold decrease in the affinity of the receptor for 125I-EGF.  相似文献   

2.
Abstract

We have studied binding of 125I-EGF to the human malignant glioma cell line U-343 MG aCl2:6, which is planned to be used as a model system in studies of toxic effects of EGF conjugates. Special care has been taken to fulfil the requirements for a correct Scatchard analysis of binding parameters. Binding as a function of time, temperature and pH was investigated as well as dissociation and internalization of bound EGF. The stability of EGF during incubation was also determined. After binding to the receptor, EGF is rapidly internalized and degraded at physiological temperature. We found that binding experiments should be performed at 4°C, since at this temperature practically no internalization took place, whereas dissociation occurred. From displacement experiments using increasing concentrations of unlabelled EGF competing with 125I-EGF for binding, binding parameters were calculated using a computerized, nonlinear, least-squares regression analysis of binding data. We found that EGF bound to a class of high affinity receptors with an apparent dissociation constant KD of about 4 × 10-10 M. The mean number of receptors was 25,000 per cell. In experiments where receptors were saturated with 125I-EGF an addititonal class of low affinity receptors was detected. This had an apparent KD of 1 × 10-8 M with a mean receptor number per cell of 780,000. We also noticed enhanced dilution-induced dissociation of bound 125I-EGF in the presence of excess unlabelled EGF, suggesting negative cooperativity.  相似文献   

3.
Incubation of cells with labelled hormone in the presence of the lysosomotropic agent chloroquine produces an enhanced intracellular accumulation of hormone and receptor. Using a pulse-chase paradigm in which cell surface receptors were labelled with 125I-EGF at 4 degrees C, it was found that when 100 microM chloroquine was present in the 37 degrees C chase medium intact hormone was accumulated in the medium. Without chloroquine, low molecular weight (mw) degradation products were found in the medium. The processes of receptor-mediated endocytosis and subcellular distribution of 125I-EGF-receptor complexes were unchanged by chloroquine. The source of the intact hormone accumulating in the medium was therefore an intracellular compartment(s). The 125I-EGF released from the cells could rebind to surface receptors and be re-internalized; rebinding was inhibited by unlabelled EGF or Concanavalin A in the incubation medium. The concentration of unlabelled EGF required to inhibit rebinding was more than three orders of magnitude greater than the amount of 125I-EGF whose rebinding was inhibited. Thus, the 125I-EGF released from intracellular sites was rebound preferentially over exogenous EGF. The possible pathways for secretion of intact 125I-EGF and mechanisms of its preferential rebinding are discussed.  相似文献   

4.
Consumption of EGF by A431 cells: evidence for receptor recycling   总被引:4,自引:0,他引:4       下载免费PDF全文
We examined the extent of EGF consumption by EGFR in A431 cells. When 125I-EGF was added to A431 cell cultures at low or high density, at concentrations which corresponded to 10-fold excess of ligand over receptor on the cell surface, most of the 125I-EGF was consumed within 2 h. The amounts of 125I-EGF consumed were much greater than available EGFR on the A431 cells, by a factor of 6.5 in low-density cultures and 5.8 in high-density cultures. When the concentration of 125I-EGF was increased in low density cultures, further consumption of 125I-EGF by the A431 cells was greatly reduced, partially due to a rapid down regulation of EGFR. However, when higher concentrations of 125I-EGF were added to high density cultures, with reduced receptor down regulation, the cells continued to consume a large fraction of the EGF in the culture medium. The consumption of 125I-EGF by these cultures was in excellent agreement with the measured amount of ligand internalized into the cell. EGF consumption was far in excess of the number of EGFR down regulated or degraded. Only a minor portion of the EGFR could have been replaced during the assay period by synthesis of new EGFR or from the intracellular pool of EGFR, and the fluid-phase uptake of EGF is only temporarily increased by exposure to EGF. Our results demonstrate that EGFR in high density A431 cell cultures recycled many times. The apparent level of recycling was dependent upon the concentration of EGF and followed Michaelis-Menton kinetics for ligand concentrations as high as 215 nM. At this EGF concentration, high-density cultures consumed 45 EGF molecules per receptor over a period of 6 h.  相似文献   

5.
A small portion of the 125I-EGF that binds specifically to intact cells or isolated membranes from a variety of sources becomes directly and irreversibly linked to EGF receptors. This provides a simple technique for affinity labeling the EGF receptor. Membranes isolated from the human epidermoid carcinoma cell line A431, which posesses extraordinarily high numbers of EGF receptors, gave rise to three major direct linkage complexes of MW = 160,000, 145,000, and 115,000. The time course for formation of each is similar, showing that 125I-EGF can form direct linkage complexes with several preexisting forms of the EGF receptor. The direct linkage of EGF to receptor is slow in comparison to 125I-EGF binding, but both processes have similar susceptibilities to competition by unlabeled EGF. EGF was modified chemically with the amino site-specific reagent, N-hydroxysuccinimidyl biotin. The biotinyl-EGF had a reduced capacity to engage in direct linkage complex formation with no concomitant reduction in its ability to bind to EGF receptors. Since native and biotinyl EGF have identical abilities to stimulate the uptake of 3H-thymidine into DNA when incubated with cultured murine 3T3 cells, the direct linkage of EGF to its receptor does not appear to play an important role in EGF-stimulated mitogenesis.  相似文献   

6.
The interaction of the epidermal growth factor (EGF) with its receptor (EGFR) is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of 125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the 125I-EGF – EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from KD≈200 pM on SKBR3 cells to KD≈8 nM on A431 cells. The 125I-EGF – EGFR binding curves (irrespective of cell line) have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the 125I-EGF - EGFR affinity, in particular when the cells are starved. The 125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.  相似文献   

7.
Polyclonal antibodies to different antigenic forms of the epidermal growth factor (EGF) receptor-kinase from human A-431 cells have been produced, and their properties have been characterized and compared. Biochemically active receptor-kinase purified by affinity chromatography was employed as one type of antigen. Denatured receptor-kinase prepared by sodium dodecyl sulfate-gel electrophoresis of the affinity-purified receptor was used as the second type of antigen. Animals immunized with either type of antigen produced antibody capable of immunoprecipitating the receptor-kinase molecule. Antibodies produced in response to the biochemically active antigenic form of the receptor-kinase are capable of blocking 125I-EGF binding to the receptor and inhibited EGF-stimulated biological responses. These antisera are not species specific in their ability to inhibit growth-factor binding to the EGF receptor of various mammalian cells. However, these rabbit antisera were unable to inhibit 125I-EGF binding to rabbit cells. Although antisera produced in response to the denatured receptor-kinase molecule are not able to block 125I-EGF binding or EGF-stimulated biological responses, they are particularly efficient for the immunoprecipitation of solubilized 125I-EGF:receptor complexes. None of the antisera contain antibodies capable of interfering with basal receptor-kinase phosphorylation activity. Although each of the antisera immunoprecipitated this kinase activity, none of the antisera contained antibody which served as a phosphorylation substrate for the EGF receptor-kinase in contrast to the immunoglobulins present antisera to the src gene product of the Rous sarcoma virus.  相似文献   

8.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

9.
Recycling of epidermal growth factor in A431 cells   总被引:3,自引:0,他引:3  
The fate of epidermal growth factor (EGF) after internalization by A431 cells was studied. First, cells containing 125I-EGF-receptor complexes in endosomes were obtained. Subsequent incubation of the cells at 37 degrees C resulted in the recycling of 125I-EGF from endosomes to the cell surface in the receptor-bound state and the gradual release of recycled ligand into the medium. The excess of unlabeled EGF blocked both rebinding and re-internalization of recycled 125I-EGF to produce enhanced accumulation of ligand in the medium. The rate of recycling was shown to be much higher than that of EGF degradation.  相似文献   

10.
Between 60% and 100% of epidermal growth factor (EGF) binding activity was recovered from membranes of the A431 human epidermoid carcinoma cell line treated with solutions containing the nonionic detergent Triton X-100. Approximately half of the recovered binding activity was sedimented at low centrifugal forece and hence was operationally insoluble in nonionic detergent solution. Receptors in both the detergent-soluble and -insoluble fractions displayed similar affinities for 125I-EGF, and the values were in good agreement with those obtained for receptors in untreated membranes. The receptors in both fractions also formed identical direct linkage complexes with 125I-EGF in similar yield, providing no evidence for partitioning of different molecular species of EGF receptors in the detergent-soluble and -insoluble fractions. Gel chromatography of the detergent-soluble membrane fraction on Sepharose 6-B revealed heterogeneity of 125I-EGF binding activity; the smallest and most monodisperse peak of activity resolved by this technique was eluted at a Stokes radius of 95 Å. Operationally soluble 125I-EGF binding activity also behaved heterogeneously during velocity sedimentation; more than half the activity sedimented more rapidly than the apparently monidisperse, 7S form. An average of less than half the nonionic detergent-solubilized activity recovered from 10 independent membrane preparations behaved as an apparently monodisperse entity. Since a maximum of 60% of 125I-EGF binding activity was operationally soluble, less than 25% of the total EGF binding activity was recovered in an apparently monodisperse form. The remaining 75% of the EGF receptors displayed a marked tendency to exist as aggregates in nonionic detergent solutions.  相似文献   

11.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

12.
The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentrations of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.  相似文献   

13.
We have devised a rapid and simple protocol for the purification of the plasma membrane from several lines of transformed cultured cells. A431 or KB plasmalemma was purified in 90 min with a two-step centrifugation cycle after selectively inducing microsomal aggregation by the addition of calcium to homogenized cells. Relative specific activity analysis using membrane marker enzymes on the various fractions indicated that the isolated plasmalemma was purified 8-12-fold over the starting homogenate and contained a high density of epidermal growth factor (EGF) receptors. Transmission electron microscopy showed the final membrane suspension consisted of unilamellar vesicles with an average diameter of approximately 100 A. The purified membrane vesicles avidly bound to 125I-EGF and reached equilibrium within 30 min. Microfiltration assays indicated more than 90% of the total binding can be displaced by excess unlabeled ligand. Equilibrium binding analysis showed a single class of high-affinity 125I-EGF binding site, with Kd = 0.14 nM and Bmax = 0.1 pmol/mg of protein for purified KB membrane and Kd = 1.2 nM and Bmax = 5.26 pmol/mg of protein for purified A431 membrane. Gel electrophoresis of 125I-EGF cross-linked to membrane EGF receptors showed a distinct autoradiographic band at 170 kilodaltons, which could be displaced with excessive amounts of unlabeled EGF. Finally, EGF-dependent autophosphorylation of the EGF receptor was clearly demonstrated with the purified membrane preparation. Membrane vesicles purified in this manner can be stored in liquid nitrogen for several months without losing their biological activity.  相似文献   

14.
The E5 protein of the bovine papillomavirus induces cellular transformation when transfected into NIH 3T3 cells, and the extent of focal transformation is enhanced by cotransfection with the epidermal growth factor (EGF) receptor (Martin et al., Cell 59:21-32, 1989). To determine whether E5 affects EGF:receptor interactions we analyzed the kinetics of 125I-EGF processing using a mathematical model that enabled us to evaluate rate constants for ligand association (ka), dissociation (kd), internalization (ke), recycling (kr), and degradation (kh). These rate constants were measured in NIH 3T3 cells transfected with the human EGF receptor (ER cells) and in cells transfected with both the EGF receptor and E5 (E5/ER cells). We found that the rate constant for 125I-EGF association ka was significantly decreased in E5/ER cells, but was apparently occupancy-independent in both cell lines. The 125I-EGF dissociation rate constant kd was significantly lower in E5 transformed cells, and increased with occupancy in both cell lines. This suggests that E5 alters the receptor before or during EGF binding so that ligand association is slower; however, once complexes are formed, EGF is bound more tightly to the receptor. Rate constants for internalization ke were also found to be occupancy-dependent, although at a given level of occupancy ke was similar for both cell lines. Also, there was no apparent effect of E5 on the recycling rate constant kr. The 125I-EGF degradation rate constant kh was 30% lower in E5 transformed cells, and was occupancy-independent. The overall effect of E5 is to stabilize intact EGF:receptor complexes which may alter mitogenic signaling of the receptor.  相似文献   

15.
Treatment of A431 human epidermoid carcinoma cells with 4-phorbol 12-myristate 13-acetate (PMA) causes an inhibition of the high affinity binding of epidermal growth factor (EGF) to cell surface receptors and an inhibition of the EGF receptor tyrosine protein kinase activity. The hypothesis that PMA controls EGF receptor function by regulating the oligomeric state of the receptor was tested. Dimeric EGF receptors bound to 125I-EGF were identified by covalent cross-linking analysis using disuccinimidyl suberimidate. Treatment of cells with PMA in the presence of 20 nM 125I-EGF caused no significant change in the level of labeled cross-linked monomeric and dimeric receptor species. Investigation of the in vitro autophosphorylation of receptor monomers and dimers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide demonstrated that the treatment of cells with PMA caused an inhibition of the tyrosine phosphorylation of both monomeric and dimeric EGF receptors. We conclude that the inhibition of the EGF receptor tyrosine protein kinase activity caused by PMA is not associated with the regulation of the oligomeric state of the EGF receptor.  相似文献   

16.
The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.  相似文献   

17.
Monoclonal antibodies (MoAbs) were developed against epidermal growth factor (EGF) receptor on the human epidermoid carcinoma cell line A431. The A431 antigen recognized by the MoAbs has an apparent molecular weight of approximately 170,000, with the same molecular weight as the CNE-2 cell line (poorly differentiated nasopharyngeal carcinoma). Administration of anti-EGF receptor MoAbs inhibited tumor formation, caused by the CNE-2 and A431 cell lines, in athymic mice. When the same MoAbs were used in therapy against Tca8113 (a human tongue carcinoma) and HeLa cells (a human cervical carcinoma), tumor growth was not affected. The number of EGF receptors and the apparent dissociation constants for 125I-EGF on CNE-2 and A431 were 1.3 x 10(5)/cell (Kd 7.7 x 10(-8) M) and 1.4 x 10(6)/cell (Kd 2.4 x 10(-9) M), respectively. Three anti-EGF receptor MoAbs were used in these studies. MoAbs 3 and 176, capable of competing with EGF for receptor binding, showed significant tumor growth inhibition. MoAb 101 was incapable of blocking the binding of EGF to its receptor and was not as effective as MoAbs 3 and 176 in tumor growth inhibition. Our observation is that in vitro, MoAb anti-EGF receptor is cytostatic, rather than cytocidal, against CNE-2 and A431.  相似文献   

18.
Fibroblast-derived growth factor (FDGF), a basic, heat- and acid-stable polypeptide partially purified from the serum-free conditioned medium of BHK cells transformed by simian virus 40, is a potent mitogen for Swiss 3T3 cells and causes a marked reduction in 125I-labeled epidermal growth factor (125I-EGF) binding to these cells. The activity which inhibits EGF binding coelutes with the growth-stimulating activity after gel filtration, ion exchange chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Both cellular responses are elicited by the same range of FDGF concentration in several murine cell types. The inhibition of EGF binding is rapid and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. FDGF does not affect the rate of cell-mediated 125I-EGF degradation. Several lines of evidence suggest that FDGF does not bind directly to EGF receptor. First, the effect of FDGF is dependent on the temperature of the assay; furthermore, treatment of cells with EGF results in loss of EGF receptors while exposure to FDGF for up to 24 h does not induce "down-regulation" of EGF receptors. Further, in A431 cells which display a large number of specific EGF receptors, 125I-EGF binding is not sensitive to FDGF. Finally, the effect of FDGF on 125I-EGF binding is not observed with isolated plasma membranes. Taken together, these findings suggest that FDGF binds to sites which are separate from EGF receptors. The results show a novel mechanism whereby a growth-promoting factor produced by a tumor cell line can rapidly modulate the affinity of the cellular receptors for EGF in an indirect manner.  相似文献   

19.
Lysosomotropic amines, such as chloroquine and methylamine, increase the intracellular accumulation of 125I-EGF by inhibiting lysosomal degradation. It has been shown previously that BALB/c-3T3 cells, prelabeled at 4 degrees C with 125I-EGF for 3 h and subsequently chased at 37 degrees C in the presence of chloroquine, internalized the surface bound 125I-EGF which was subsequently released into the extracellular medium in a high molecular weight form which co-migrated with native 125I-EGF. The secreted 125I-EGF rebound to the cells from which it was released more efficiently than does peptide in the extracellular media. We now show that when the BALB/c-3T3 cells were prelabeled at 37 degrees C for 2 h in the presence of chloroquine, the internalized 125I-EGF released into the medium was in a high molecular weight form which co-migrated with native 125I-EGF and did not rebind anymore efficiently than did peptide in the extracellular media. This lack of rebinding was not due to an alteration in the 125I-EGF molecule since it was still capable of rebinding to naive A431 cells, nor was it due to the exhaustion of EGF receptors on the BALB/c-3T3 cells. The inhibition of rebinding was observed only when the cells were treated with EGF in the presence of chloroquine, and was not due to a general down-regulation of membrane receptors. The differences between the rebinding of 125I-EGF at 4 degrees C and 37 degrees C suggest that EGF may be processed via different pathways in the cell.  相似文献   

20.
Summary The mitogenic and differentiation-inducing activities of epidermal growth factor (EGF) in epithelial tissues have been well described. Since non-mitogenic effects of EGF, especially in mesenchymal tissues such as smooth muscle are not well-known (Nanney et al. 1984), we have examined EGF-binding and receptors in smooth muscle from many sites. Specific EGF binding sites were detected by incubating small pieces of tissue with 125I-EGF; immunoreactive EGF receptors were detected by immunohistochemistry. In-situ localization of 125I-EGF binding sites and immunoreactive EGF receptors of smooth muscle cells in intact mammalian tissues were identical using either 125I-EGF autoradiography or anti-EGF receptor antibody in an immunoperoxidase method. Cultured rat aortic smooth muscle also contained specific EGF receptors as detected by their biological response to EGF-binding and internalization of 125I-EGF, as well as EGF-stimulated phosphorylation of a 170K protein. The presence of EGF receptors in a well-differentiated smooth muscle cell indicates that EGF may play a physiological, but non-mitogenic role in mammalian tissues in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号