首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of polyphosphoinositide breakdown and inositol phosphate formation have been studied in rat cortical synaptosomes labelled in vitro with myo-[2-3H]inositol. Intrasynaptosomal Ca2+ concentrations have been varied by the use of Ca-EGTA buffers or by adding the ionophore A23187 in the presence and absence of 1 mM Ca2+. The former studies have revealed that, at very low (20 nM) intrasynaptosomal free Ca2+ levels, inositol bisphosphate, but not inositol monophosphate levels are reduced. Addition of A23187 in the absence of added Ca2+ gives rise to greatly enhanced inositol bisphosphate accumulation, which is further enhanced if 1 mM Ca2+ is present in the extrasynaptosomal medium. At all time points examined (down to 2 s after adding ionophore), the ratio of inositol trisphosphate/inositol bisphosphate accumulation does not exceed 0.2, and calculations based on inositol bis- and trisphosphate breakdown rates in synaptosomal lysates suggest that only a minority of the inositol bisphosphate arises from degradation of inositol trisphosphate. Addition of ionophore in the presence (but not in the absence) of 1 mM Ca2+ leads to rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and ATP and slower breakdown of phosphatidylinositol 4-phosphate (PtdInsP). The rates of loss of PtdinsP2 and ATP are very highly correlated, suggesting that polyphosphoinositide resynthesis may be limited by ATP availability at high Ca2+ levels. Analysis of 32P-labelled synaptosomes also reveals that A23187 produces Ca2+-dependent losses of PtdInsP2, PtdInsP, ATP, and GTP radioactivity and a marked increase in the radioactivity of a compound distinct from nucleotides or any of the lipid breakdown products tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The polyphosphoinositide phosphodiesterase of erythrocyte membranes   总被引:94,自引:53,他引:41       下载免费PDF全文
1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.  相似文献   

3.
Activation of the phosphatidylinositol cycle in spreading cells   总被引:4,自引:0,他引:4  
Metabolites of the phosphatidylinositol cycle were analyzed in BHK-21 (C13) cells spreading on fibronectin-coated culture plates in comparison with attached nonspreading cells 45 min after plating. Among the water-soluble metabolites (glycerophosphoinositol, inositol, inositol monophosphate, inositol bisphosphate, inositol trisphosphate, and inositol tetrakisphosphate), significant elevations were found for inositol monophosphate, inositol bisphosphate, and inositol tetrakisphosphate. In the lipid fraction, phosphatidylinositol 4-monophosphate and phosphatidylinositol 4,5-bisphosphate were significantly elevated. The activation of the phosphatidylinositol cycle in spreading versus nonspreading attached BHK-21 (C13) cells may be involved in the permissive effect of the extracellular matrix on cell proliferation.  相似文献   

4.
An accumulation of 3H-labelled inositol phosphates is observed when prelabelled rat superior cervical sympathetic ganglia are exposed to [8-arginine]vasopressin or to muscarinic cholinergic stimuli. The response to vasopressin is much greater than the response to cholinergic stimuli. The response to vasopressin is blocked by a V1-vasopressin antagonist, and oxytocin is a much less potent agonist than vasopressin. Vasopressin causes no increase in the cyclic AMP content of ganglia. These ganglia therefore appear to have functional V1-vasopressin receptors that are capable of activating inositol lipid breakdown, but no V2-receptors coupled to adenylate cyclase. The first [3H]inositol-labelled products to accumulate in stimulated ganglia are inositol trisphosphate and inositol bisphosphate, suggesting that the initiating reaction in stimulated inositol lipid metabolism is a phosphodiesterase-catalysed hydrolysis of phosphatidylinositol 4,5-bisphosphate (and possibly also phosphatidylinositol 4-phosphate). This response to exogenous vasopressin occurs in ganglia incubated in media of reduced Ca2+ concentration. The physiological functions of the V1-vasopressin receptors of these ganglia remain unknown.  相似文献   

5.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

6.
How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI‐4‐kinase and PI‐4‐phosphate‐5‐kinase activities are activated and that their lipid products PI‐4‐phosphate and PI‐4,5‐bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca2+ ([Ca2+]c) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li+, an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI‐4‐phosphate. Furthermore, inhibition of PI‐4‐kinases resulted in a decrease in the Ca2+ and GA contents under HS that could be rescued by PI‐4‐phosphate but not PI. However, the decrease in the Ca2+ and GA contents by silencing of PI‐4‐phosphate‐5‐kinase could not be rescued by PI‐4‐phosphate. Taken together, our study reveals the essential role of the step converting PI to PI‐4‐phosphate and then to PI‐4,5‐bisphosphate in [Ca2+]c signalling and GA biosynthesis under HS.  相似文献   

7.
1. The mechanism of acetylcholine-stimulated breakdown of phosphatidyl-myo-inositol 4,5-bisphosphate and its dependence on extracellular Ca(2+) was investigated in the rabbit iris smooth muscle. 2. Acetylcholine (50mum) increased the breakdown of phosphatidylinositol bisphosphate in [(3)H]inositol-labelled muscle by 28% and the labelling of phosphatidylinositol by 24% of that of the control. Under the same experimental conditions there was a 33 and 48% increase in the production of (3)H-labelled inositol trisphosphate and inositol monophosphate respectively. Similarly carbamoylcholine and ionophore A23187 increased the production of these water-soluble inositol phosphates. Little change was observed in the (3)H radioactivity of inositol bisphosphate. 3. Both inositol trisphosphatase and inositol monophosphatase were demonstrated in subcellular fractions of this tissue and the specific activity of the former was severalfold higher than that of the latter. 4. The acetylcholine-stimulated production of inositol trisphosphate and inositol monophosphate was inhibited by atropine (20mum), but not tubocurarine (100mum); and it was abolished by depletion of extracellular Ca(2+) with EGTA, but restored on addition of low concentrations of Ca(2+) (20mum). 5. Calcium-antagonistic agents, such as verapamil (20mum), dibenamine (20mum) or La(3+) (2mm), also abolished the production of the water-soluble inositol phosphates in response to acetylcholine. 6. Release of inositol trisphosphate from exogenous phosphatidylinositol bisphosphate by iris muscle microsomal fraction (;microsomes') was stimulated by 43% in the presence of 50mum-Ca(2+). 7. The results indicate that increased Ca(2+) influx into the iris smooth muscle by acetylcholine and ionophore A23187 markedly activates phosphatidylinositol bisphosphate phosphodiesterase and subsequently increases the production of inositol trisphosphate and its hydrolytic product inositol monophosphate. The marked increase observed in the production of inositol monophosphate could also result from Ca(2+) activation of phosphatidylinositol phosphodiesterase. However, there was no concomitant decrease in the (3)H radioactivity of this phospholipid.  相似文献   

8.
Using either [32]ATP or [3H]inositol as precursors which were injected intraventricularly into rat brain, decapitative ischemic treatment resulted in a more rapid loss of labeled phosphatidylinositol 4,5-biphosphates than phosphatidylinositol 4-phosphates in the initial 30 s-1 min. When polyphosphoinositides were labeled with [3H]inositol, the breakdown of these compounds was accompanied by a time-dependent appearance of labeled inositol phosphates. Although the level of radioactivity of inositol trisphosphate was low, a peak labeling activity was shown at 30 s. The radioactivity of inositol bisphosphate showed an increase after a delay of 30 s, and reached a peak at 1 min before declining to the baseline level at 5 min. There was also a lag period of 30 s for the appearance of labeled inositol monophosphate, after which the radioactivity continued to increase in a biphasic manner for the entire 5 min period. Results indicate that decapitative ischemic treatment to rats can serve as an experimental model for assessing in vivo stimulation of the receptor-mediated signal transduction mechanism related to polyphosphoinositide breakdown and subsequent turnover of inositol phosphates in brain.  相似文献   

9.
Chromaffin cells of bovine adrenal medulla release catecholamines in response to activation of nicotinic ACh receptors which open voltage-sensitive calcium channels. Catecholamine secretion by exocytosis requires an increase in cytosolic free calcium. The cells also possess muscarinic ACh receptors but muscarinic agents do not provoke catecholamine release. Quin-2 studies show that they do not increase cytosolic free Ca2+ concentration, but unlike the nicotinic agents, they cause phosphoinositide hydrolysis. Muscarinic stimulation leads to rapid loss of labelled phosphatidylinositol 4-phosphate and of phosphatidylinositol 4,5-bisphosphate. At the same time there is release of inositol trisphosphate, inositol bisphosphate and inositol phosphate. In a number of other cells inositol trisphosphate may act as a second messenger releasing Ca2+ from storage sites in the endoplasmic reticulum but this is not its function in bovine chromaffin cells.  相似文献   

10.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

11.
E N?nberg  J Putney 《FEBS letters》1986,195(1-2):319-322
alpha 1-Adrenergic activation of isolated brown adipocytes causes a rapid mobilization of intracellular Ca2+. The cells also respond with an increased turnover of inositol lipids. The present work demonstrates that alpha 1-adrenergic stimulation of brown adipocytes results in phospholipase C-mediated breakdown of phosphatidylinositol bisphosphate to form inositol trisphosphate. The rate of appearance of inositol trisphosphate is sufficiently rapid for it to mediate or contribute to Ca2+ mobilization in these cells.  相似文献   

12.
Phosphorylation of endogeneous phosholipids of rat liver mitochondrial fractions with γ[32P]ATP revealed formation of all the known inositol phospholipids, such as phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Additionally, a new inositol phospholipid was detected. Incorporation of [3H]-labelled insositol followed a similar profile. Enzymatic experiments indicated that the new lipid could possibly be phosphatidylinositol trisphosphate. The presence of phosphoinositides-generated second messengers such as diacylglycerol and inositol trisphosphate was also confirmed. Protein kinase C, which acts as mediator between second messengers and nuclear factors, was also found to be present in mitochondria in significant amount. These results suggest that phosphoinositide signal transduction pathway is operative in rat liver mitochondria.  相似文献   

13.
《FEBS letters》1986,201(1):31-36
Association of neurotensin to its receptor in HT29 cells increases the intracellular concentration of inositol phosphates. A rapid (20–30 s), transient stimulation of inositol trisphosphate (275% of the basal level) and inositol bisphosphate (420%) is first observed, followed by a slower, stable increase in inositol monophosphate (170%). Half-maximal stimulation of the three inositol phosphates was obtained with 50–100 nM neurotensin. These results indicate that neurotensin is able to regulate intracellular Ca2+ levels in HT29 cells by using inositol trisphosphate as a second messenger.  相似文献   

14.
Oscillations in cytoplasmic Ca2+ concentration are a universal mode of signaling following physiological levels of stimulation with agonists that engage the phospholipase C pathway. Sustained cytoplasmic Ca2+ oscillations require replenishment of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), the source of the Ca2+-releasing second messenger inositol trisphosphate. Here we show that cytoplasmic Ca2+ oscillations induced by cysteinyl leukotriene type I receptor activation run down when cells are pretreated with Li+, an inhibitor of inositol monophosphatases that prevents PIP2 resynthesis. In Li+-treated cells, cytoplasmic Ca2+ signals evoked by an agonist were rescued by addition of exogenous inositol or phosphatidylinositol 4-phosphate (PI4P). Knockdown of the phosphatidylinositol 4-phosphate 5 (PIP5) kinases α and γ resulted in rapid loss of the intracellular Ca2+ oscillations and also prevented rescue by PI4P. Knockdown of talin1, a protein that helps regulate PIP5 kinases, accelerated rundown of cytoplasmic Ca2+ oscillations, and these could not be rescued by inositol or PI4P. In Li+-treated cells, recovery of the cytoplasmic Ca2+ oscillations in the presence of inositol or PI4P was suppressed when Ca2+ influx through store-operated Ca2+ channels was inhibited. After rundown of the Ca2+ signals following leukotriene receptor activation, stimulation of P2Y receptors evoked prominent inositol trisphosphate-dependent Ca2+ release. Therefore, leukotriene and P2Y receptors utilize distinct membrane PIP2 pools. Our findings show that store-operated Ca2+ entry is needed to sustain cytoplasmic Ca2+ signaling following leukotriene receptor activation both by refilling the Ca2+ stores and by helping to replenish the PIP2 pool accessible to leukotriene receptors, ostensibly through control of PIP5 kinase activity.  相似文献   

15.
The production of inositol phosphates in response to gonadotropin releasing hormone (GnRH) was studied in rat anterior pituitary tissue preincubated with [3H]inositol. Prelabelled paired hemipituitaries from prepubertal female rats were incubated in the presence or absence of GnRH in medium containing 10 mM-Li+ X Li+, which inhibits myo-inositol-1-phosphatase, greatly amplified the stimulation of inositol phosphate production by GnRH (10(-7) M) to 159, 198 and 313% of paired control values for inositol 1-phosphate, inositol bisphosphate and inositol trisphosphate respectively after 20 min. The percentage distribution of [3H]inositol within the phosphoinositides was 91.3, 6.3 and 2.4 for phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively and was unaffected by GnRH. The stimulation of inositol trisphosphate production by GnRH was evident after 5 min incubation, was dose-dependent with a half-maximal effect around 11 nM, and was not inhibited by removal of extracellular Ca2+. Elevation of cytosolic Ca2+ by membrane depolarization with 50 mM-K+ had no significant effect on inositol phosphate production. These findings are consistent with the hypothesis that GnRH action in the anterior pituitary involves the hydrolysis of phosphatidylinositol 4,5-bisphosphate. The resulting elevation of inositol trisphosphate may in turn lead to intracellular Ca2+ mobilization and subsequent stimulation of gonadotropin secretion.  相似文献   

16.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

17.
Background information. At fertilization in mammalian eggs, the sperm induces a series of Ca2+ oscillations via the production of inositol 1,4,5‐trisphosphate. Increased inositol 1,4,5‐trisphosphate production appears to be triggered by a sperm‐derived PLCζ (phospholipase C‐ζ) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5‐bisphosphate hydrolytic activity of PLCζ implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization‐mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. Results. We investigated PLCζ‐ and fertilization‐mediated generation of DAG in mouse eggs by monitoring plasma‐membrane translocation of a fluorescent DAG‐specific reporter. Consistent plasma‐membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCζ, was barely detectable. However, when PLCζ is overexpressed in eggs, significant plasma‐membrane DAG production occurs in concert with a series of unexpected secondary high‐frequency Ca2+ oscillations. We show that these secondary Ca2+ oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca2+ oscillations appears to involve Ca2+ influx and the loading of thapsigargin‐sensitive Ca2+ stores. Conclusions. Our results suggest that overproduction of DAG in PLCζ‐injected eggs can lead to PKC‐mediated Ca2+ influx and subsequent overloading of Ca2+ stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca2+ homoeostasis via excessive Ca2+ influx.  相似文献   

18.
Abstract: The uptake of myo -[3H]inositol into neurones from Lymnaea stagnalis has been demonstrated to be a sodium-dependent process, saturable with a K m of approximately 50 μ M and shown to be linear with time for at least 120 min. The rate of transport of myo -inositol into the cell appears to influence directly its incorporation into neuronal lipids. Using anion-exchange high-performance liquid chromatography, we have demonstrated a high rate of breakdown of phosphatidylinositol 4,5–bisphosphate in Lymnaea nerve under basal conditions. Stimulation with carbamylcholine enhanced production of inositol 1–phosphate, inositol bisphosphate, inositol 1,4,5–trisphosphate, and inositol 1,3,4–trisphosphate. Formation of inositol tetrakisphosphate was not detected. Electrical stimulation also caused an increased formation of inositol phosphates. These results provide evidence for an active myo -inositol transport system in molluscan neurones and suggest that the hydrolysis of inositol lipids may play a role as an intracellular signalling system in this tissue.  相似文献   

19.
Elicitor-induced production of the phytoalexin, 6-methoxymellein, in cultured carrot cells was appreciably depressed by the calmodulin inhibitors N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and trifluoperazine. An inhibitor of Ca2+-phospholipid dependent protein kinase (protein kinase C), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, also inhibited the phytoalexin production in carrot. Both phorbol ester and synthetic diacylglycerol, activators of protein kinase C, showed an ability to induce 6-methoxymellein production even in the absence of elicitor. Phosphatidylinositol-degrading phospholipase activity increased in elicitor-treated carrot cells without a notable lag, and a product of this reaction, inositol trisphosphate, appeared to increase in parallel with the phospholipase activity. These results suggest that breakdown of phosphatidylinositol takes place in the elicitor-treated carrot cells. The messengers liberated from the phospholipid in the plasma membrane may participate in the elicitation process by controlling the activity of protein kinase C-like enzyme(s) and Ca2+-mediated processes including calmodulin.  相似文献   

20.
Experiments with washed rabbit platelets demonstrate that stimulation with a low concentration of thrombin (0.1 unit/ml), that causes maximal aggregation and partial release of amine granule contents, also causes increased accumulation of [3H]inositol-labelled inositol trisphosphate (InsP3) in the presence of 20 mM-Li+. This concentration of Li+ was found to inhibit the degradation of inositol phosphates by phosphomonoesterases. This result indicates that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is degraded early after platelet stimulation with thrombin, although in a previous study we had found no decrease in amount. In the absence of Li+, the labelling of inositol bisphosphate (InsP2) increased more rapidly than that of InsP3, consistent with rapid degradation of InsP3 by phosphomonoesterase. After 30s the increase in InsP2 was augmented by Li+. This increase in InsP2 could have been due to increased degradation of phosphatidylinositol 4-phosphate or inhibition of breakdown of InsP2 to InsP with a lesser inhibition of breakdown of InsP3 to InsP2. The effect on InsP3 and InsP2 of stimulation of the platelets with 1.0 unit of thrombin/ml was comparable with the effect of the lower concentration of thrombin. Inositol phosphate (InsP) labelling did not increase in response to 0.1 unit of thrombin/ml, but increased when the platelets were stimulated with 1.0 unit of thrombin/ml. Whether the increase in InsP was due to increased degradation of phosphatidylinositol or a greater rate of breakdown of InsP2 to InsP than InsP to inositol cannot be determined in these experiments. These results indicate that degradation of PtdIns(4,5)P2 is an early event in platelet activation by thrombin and that formation of inositol phosphates and 1,2-diacylglycerol rather than a decrease in PtdIns(4,5)P2 may be the important change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号