首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Growth hormone GH stimulates lipolysis in mature adipocytes and primary preadipocytes but promotes adipogenesis in preadipocyte cell lines. The lactogenic hormones (prolactin PRL and placental lactogen) also stimulate adipogenesis in preadipocyte cell lines but have variable lipolytic and lipogenic effects in mature adipose tissue. We hypothesized that differences in expression of GH receptors GHR and PRL receptors PRLR during adipocyte development might explain some of the differential effects of the somatogens and lactogens on fat metabolism. To that end, we compared: (a) the expression of GHR and PRLR mRNAs in 3T3-L1 preadipocytes during the course of adipocyte differentiation; (b) the induction of STAT-5 activity by GH and PRL during adipogenesis; and (c) the acute effects of GH and PRL on the suppressors of cytokine signaling (SOCS-1-3 and cytokine-inducible SH2-domain-containing protein CIS) and IGF-I. In confluent, undifferentiated 3T3-L1 cells, the levels of GHR mRNA were approximately 250-fold higher than the levels of PRLR mRNA. Following induction of adipocyte differentiation the levels of PRLR mRNA rose 90-fold but GHR mRNA increased only 0.8-fold. Expression of both full-length (long) and truncated (short) isoforms of the PRLR increased during differentiation but the long isoform predominated at all time points. Mouse GH mGH stimulated increases in STAT-5a and 5b activity in undifferentiated as well as differentiating 3T3-L1 cells; mouse PRL mPRL had little or no effect on STAT-5 activity in undifferentiated cells but stimulated increases in STAT-5a and 5b activity in differentiating cells. mGH stimulated increases in SOCS-2 and SOCS-3 mRNAs in undifferentiated cells and SOCS-1-3 and CIS mRNAs in differentiating cells; mPRL induced CIS in differentiating cells but had no effect on SOCS-1-3. mPRL and mGH stimulated increases in IGF-I mRNA in differentiating cells but not in undifferentiated cells; the potency of mGH (3-6-fold increase, p < 0.01) exceeded that of mPRL (40-90% increase, p < 0.05). Our findings reveal disparities in the expression of PRLR and GHR during adipocyte development and differential effects of the hormones on STAT-5, the SOCS proteins, CIS, and IGF-I. These observations suggest that somatogens and lactogens regulate adipocyte development and fat metabolism through distinct but overlapping cellular mechanisms.  相似文献   

6.
7.

Background

Enteroaggregative Escherichia coli (EAEC) is one of the most common bacterial pathogens associated with the etiology of persistent diarrhea. A characteristic feature of EAEC-pathogenesis is the induction of profound inflammatory response in the intestinal epithelium. The present study was designed to investigate the underlying mechanism of inflammatory responses induced by a novel galactose specific adhesin of T7 strain of EAEC (EAEC-T7) in human intestinal epithelial cell line (INT-407).

Methods

INT-407 cells were stimulated with the adhesin in the absence and presence of anti-adhesin (IgGAD)/d-galactose/H7/staurosporin (inhibitor of PKC)/PD098059 (inhibitor of MEK)/SB203580 (inhibitor of p38-MAPkinase)/AG490 (inhibitor of JAK (-2,-3)/STAT-3 pathway). The expression of activated Raf-1, MEK-1, ERK1/2, JNK, p38-MAPK and STAT-3 was analyzed by Western immunoblot. Release of interleukin-8 (IL-8) was measured by ELISA.

Results

The adhesin was found to induce activation of Raf-1, MEK-1, ERK1/2, p38-MAPK and STAT-3, which was reduced in the presence of IgGAD/d-galactose. The activation of Raf-1 was found to be attenuated in the presence of H7/staurosporin. The expression of phosphorylated STAT-3 was downregulated in the presence of AG490 and PD098059. Further, the adhesin induced IL-8 secretion was reduced in the presence of the inhibitors of MEK (PD098059), p38-MAPK (SB203580) and JAK (-2,-3)/STAT-3 pathway (AG490).

Conclusions

We propose that STAT-3 activation is quintessential for the galactose specific adhesin induced IL-8 secretion by INT-407 cells and must occur in concert with the activation of ERK1/2.

General significance

Our contribution regarding the galactose specific adhesin mediated signaling leads to an improved understanding of the EAEC-pathogenesis and may provide novel therapeutic approaches to combat EAEC infection.  相似文献   

8.
9.
10.
Although the use of IFN-alpha in combination with ribavirin has improved the treatment efficacy of chronic hepatitis C virus (HCV) infection, 20-50% of patients still fail to eradicate the virus depending on the HCV genotype. Recently, overexpression of HCV core protein has been shown to inhibit IFN signaling and induce SOCS-3 expression. Aim of this study was to examine the putative role of SOCS proteins in IFN resistance. By Western blot analysis, a 4-fold induction of STAT-1/3 phosphorylation by IFN-alpha was observed in mock-transfected HepG2 clones. In contrast, IFN-induced STAT-1/3 phosphorylation was considerably downregulated by SOCS-1/3 overexpression. In mock-transfected cells, IFN-alpha induced 2',5'-OAS and myxovirus resistance A (MxA) promoter activity 40- to 80-fold and 10- to 35-fold, respectively, and this effect was abrogated in SOCS-1/3 overexpressing cells. As detected by Northern blot technique, IFN-alpha potently induced 2',5'-OAS and MxA mRNA expression in the control clones. Overexpression of SOCS-1 completely abolished both 2',5'-OAS and MxA mRNA expression, whereas SOCS-3 mainly inhibited 2',5'-OAS mRNA expression. Our results demonstrate that SOCS-1 and SOCS-3 proteins inhibit IFN-alpha-induced activation of the Jak-STAT pathway and expression of the antiviral proteins 2',5'-OAS and MxA. These data suggest a potential role of SOCS proteins in IFN resistance during antiviral treatment.  相似文献   

11.
Ozaki  Yumi  Fujiwara  Kyoko  Ikeda  Maki  Ozaki  Toshinori  Terui  Tadashi  Soma  Masayoshi  Inazawa  Johji  Nagase  Hiroki 《Mammalian genome》2015,26(11):591-597

Gene amplified in squamous cell carcinoma (SCC) 1 (GASC1), also known as KDM4C/JMJD2C, encodes a histone demethylase that specifically demethylates lysine residues (H3K9, H3K36, and H1.4K26) and plays a crucial role in the regulation of gene expression as well as in heterochromatin formation. GASC1 is located at human chromosome 9p23–24, where frequent genomic amplification is observed in human esophageal cancer, and its aberrant expression is detected in a variety of human cancers, such as breast, colon, and prostate. Therefore, it is highly likely that GASC1 contributes to the genesis and/or development of cancer. However, there is a lack of direct evidence of GASC1 having an oncogenic function. In this study, we aimed to clarify the role of GASC1 in the skin SCC carcinogenesis. For this purpose, we generated Gasc1-heterozygous mice (Gasc1 +/−) with reduced expression of Gasc1. On the basis of our results, Gasc1 +/− mice displayed a significantly lower incidence and multiplicity of both benign and malignant tumors induced by the two-stage skin carcinogenesis protocol than wild-type mice. In addition, the volume of carcinoma was significantly lower in Gasc1 +/ mice. Consistent with these observations, knocking down of Gasc1 resulted in reduced cell viability of SCC cells in vitro. Our findings clearly demonstrated that GASC1 has an oncogenic role in skin carcinogenesis.

  相似文献   

12.

Aims/Hypothesis

In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation.

Methods

We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27Kip1 was quantified by real-time RT-PCR and immunohistochemistry.

Results

Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (p<0.05). IRS-1 to IRS-2 ratios were lower in malignant than in benign prostatic tissue (p<0.05). These altered ratios both in cancer and adjacent tissue were significantly associated with reduced p27Kip1 content (p<0.02). Interestingly, IGF-1 receptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019).

Conclusions/Interpretation

We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.  相似文献   

13.
Long non-coding RNA (lncRNA) plasmacytoma variant translocation 1(PVT1) was aberrantly expressed in various cancers and is associated with tumor prognosis. Here, we aim to investigate its function in prostate cancer. Small interfering RNA against PVT1 was transfected into prostate cancer cell lines and cell growth and apoptosis were analyzed. Our results showed that PVT1 was overexpressed in prostate cancer tissues and cells. Higher levels of PVT1 indicated poorer overall survival and disease-free survival. A significant association was found between PVT1 expression and tumor stage. Besides, PVT1 knockdown significantly inhibited prostate cancer growth in vivo and in vitro and promoted cell apoptosis. PVT1 knockdown also significantly upregulated the expression of cleaved caspase-3 and cleaved caspase-9, but downregulated the expression of c-Myc in prostate cancer cell lines. Our results suggest that PVT1 played an oncogenic role in prostate cancer and could be used as a potential biomarker for diagnosis of prostate cancer.  相似文献   

14.
15.
16.
17.
18.
19.
Suppressor of Cytokine Signaling (SOCS) proteins are recently identified inhibitors/regulators of cytokine/growth factor signaling pathways. We have previously shown that SOCS-3 is upregulated in mice after sepsis induced by cecal ligation and puncture; however, the contribution of SOCS-1 to septic morbidity and mortality is unclear. In the present study, we characterized SOCS-1 expression in different tissues and delineated putative mechanisms effecting SOCS-1 expression in thymus from septic mice. We observed no difference in SOCS-1 expression in blood, peritoneal leukocytes, lung, and spleen taken from sham or septic animals at 24 h after surgery. In contrast, SOCS-1 expression in thymus declined significantly after sepsis and this down-regulation of SOCS-1 was associated with increased thymocyte apoptosis as well as augmented Bax recruitment to the mitochondria. Administration of RU-38486, a steroid receptor antagonist, reversed the above effects in the septic thymus. Furthermore, SOCS-1+/− mice showed a significant higher mortality when compared to SOCS-1+/+ mice after sepsis. Together, these results show that sepsis increases steroid-induced thymic lymphoid cell apoptosis, which is associated with reduced SOCS-1 expression and increased Bax translocation to mitochondria. Survival data suggests that SOCS-1 protein may play an important role in sepsis.  相似文献   

20.
High-risk human papillomavirus (HPV) must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ) contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号