首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radioiodinated derivatives of the metabolically stable enkephalin analogues, [DAla2,Leu5]- and [DAla2,DLeu5]-enkephalin, have been prepared. Such derivatives show sterospecific binding to receptors in brain homogenates and some neuroblastoma cell lines such as NG108-15 and N4TG1. The relative effects of levorphanol and dextrorphan and Na+ and Mn++ ions on enkephalin binding in brain and cells indicate that the iodinated derivatives are interacting with opiate receptors. Levorphanol is considerably more potent in displacing specifically bound enkephalin than dextrorphan. Sodium ions at physiological concentrations decrease enkephalin binding whereas manganese ions enhance it. Unlabelled monoiodo derivatives retain high potency in the guinea-pig ileum, mouse vas deferens and receptor binding assays. Unlabelled diiodo derivatives show far lower potency in these assays. It is concluded that radio-iodinated derivatives containing one iodine per molecule retain high affinity for the opiate receptor but diiodo derivatives do not.  相似文献   

2.
The heterogeneity of rat brain opiate receptors was examined by analyzing competition data. The binding of three prototypical tritiated opioid agonists, [3H]-dihydromorphine ([3H]-DHM), [3H]-D-ala2-D-leu5-enkephalin ([3H]-DADLE), and [3H]-ethylketocyclazocine ([3H]-EKC) was determined in the presence of varying concentrations of each of these unlabeled ligands, generating nine displacement curves. A computer program was then used to find the best fit of a model system to these data, assuming two, three or four independent binding sites. The best fit was a four-site model. One of these sites is specific for DHM; two are relatively selective for DHM and DADLE respectively, but also bind EKC. The remaining site binds only EKC with high affinity. These results, together with displacement data using naloxone, FK33824, and D-ala2-met5-enkephalinamide, are discussed in terms of current opiate receptor models.  相似文献   

3.
The effect of Leu5-enkephalin on growth hormone (GH) and prolactin (PRL) release was studied in vivo in the infant rat and compared to that of morphine. In 10 day-old pups, intracerebroventricular injection of Leu5-enkephalin (50, 75 and 100 μg) resulted in a dose-related increase in plasma GH; morphine was active as GH releaser at the dose of 5 and 10 μg, but not at 2.5 μg. Pretreatment with naloxone (2 mg/kg ip) suppressed the GH-releasing effect of either Leu5-enkephalin (100 μg) or morphine (10 μg). Leu5-enkephalin (75 and 100 μg) induced a rise in plasma PRL which was neither dose-related nor antagonized by naloxone; morphine (5 and 10 μg) was active as PRL releaser and its effect was antagonized by naloxone. These results indicate that: 1) Leu5-enkephalin stimulates both GH and PRL release; 2) the release of GH by Leu5-enkephalin but likely not that of PRL involves specific opiate receptors; 3) morphine releases GH and PRL through specific opiate receptors.  相似文献   

4.
Abstract: The conditions in which Leu5-enkephalin inhibition of striatal adenylate cyclase was observed were defined. It was determined that enkephalin inhibition was dependent on GTP. The apparent Km for GTP in opiate inhibition was determined to be 0.5 and 2 μM when 0.1 mM- and 0.5 mM-ATP were used as substrate. ITP, but not CTP or UTP, could substitute for GTP in the reaction. Though the addition of monovalent cations—Na+,K+, Li+, Cs+, and choline+—stimulated striatal adenylate cyclase activity, enkephalin inhibition of striatal adenylate cyclase did not require Na+ when theophylline was used as the phosphodiesterase inhibitor. Under optimal conditions, i.e., 20 μM-GTP and 100 mM-Na+, Leu5-enkephalin inhibited the striatal adenylate cyclase activity by 23–27%. When the enkephalin regulation of the cyclase activity was further characterized, it was observed that Leu5-enkephalin inhibited the rate of the enzymatic reaction. Kinetic analysis revealed that the opioid peptide decreases Vmax values but not the Km values for the substrates Mg2+ and Mg-ATP. Agents such as MnCl2, NaF, and guanyl-5′-ylimido-diphosphate, which directly activated the adenylate cyclase, antagonized the opiate inhibition. Levorphanol and (–)naloxone were more potent than dextrorphan and (+)naloxone in inhibiting adenylate cyclase and in reversing the enkephalin inhibition, respectively. There were differences in the potencies of various opiate peptides in their inhibition of striatal adenylate cyclase activity, with Met5- > Leu5-enkephalin > β-endorphin. The opiate receptor through which the enkephalin inhibition was observed is most likely δ in nature, since in the presence of either Na+ or K+, the magnitude of the alkaloid inhibition was reduced, whereas the peptide inhibition was either potentiated or not affected.  相似文献   

5.
Abstract

Previous studies using a variety of opiate ligands have suggested the existence of several subclasses of opiate receptors in crude membrane fractions of rat brain, and a similar diversity in bovine adrenal medulla. To examine the receptor profile of bovine adrenal medulla in detail we have studied the binding of classical ligands for mu (μ), delta (δ) and kappa (k) opiate receptors. [3H]naloxone ([3H]NAL), [3H] morphine ([3H]MOR), [3H]D-Ala2-D-Leu5-enkephalin ([3H]DAL) and [3H]ethyl-ketocyclazocine ([3H]EKCZ) were used as tracers; unlabeled competitors were NAL, MOR, DAL and ketocyclazocine (KCZ). In adrenal medulla [3H]NAL was specifically bound with a hierarchy of displacement NAL > MOR > KCZ ? DAL. No specific binding of [3H]DAL or [3H]EKCZ was found; for [3H]MOR very low levels of binding were seen, with no displacement by NAL or DAL, inconsistent displacement by KCZ and substantial displacement by MOR with an ED50 of 1.5 nM. In parallel studies rat brain membranes bound each labeled ligand with affinity and specificity consistent with previously published reports. Identical results were obtained in membranes from both tissues prepared with a preincubation step including 100 mM Na+, suggesting that the results were not influenced by occupation of binding sites by endogenous ligands. We interpret these data as supporting the existence of opiate receptors of the μ subtype in bovine adrenal medulla. We find, however, no evidence of δ or k sites in this tissue.  相似文献   

6.
On the basis of structural and conformational similarities between the C-terminal 7-peptide of cholecystokinin (pancreozymin) (CCK-(27–33)) and the active enkephalin analog [Trp4,Met5]-enkephalin, the affinity of CCK-(27–33) for the opiate receptor was determined. With unsulfated CCK-(27–33) half-maximal inhibition of stereospecific binding of [3H]-naloxone in a rat brain membrane preparation was observed at a 200 times higher concentration than that required with [Met5]-enkephalin. Sulfated CCK-(27–33) did not bind at concentrations up to 4 × 10?5M. In the bioassay based on inhibition of electrically evoked contractions of guinea pig ileum similar potency ratios were observed and the effect of CCK-(27–33) was shown to be naloxone-reversible. These findings are of interest in view of the recently demonstrated presence of CCK-fragments in the brain.  相似文献   

7.
Neuroblastoma x glioma cells NG108-15 were cultured in lipid-free medium supplemented with fatty acids of various chain length and unsaturation. Binding of 3H-labelled [DAla2]-[Dleu5]-enkephalin by membranes of cells grown in saturation fatty acids of different chain length was not significantly different from that of the control. On the other hand, a proportional decrease of binding capacity with no change in residual receptor affinity was noticed when cells were cultured in medium containing fatty acids of increasing unsaturation. This decrease was time dependent and reached a maximum at about 48 h. Binding of [3H]dihydromorphine and [3H]naloxone was similarly affected. In contrast, when membranes of cells grown in normal medium were preincubated up to 3 h with unsaturated fatty acid and tested for opioid binding, no significant reduction was observed. Examination of the fatty acid composition of phospholipid from cells grown in linolenate indicated that a significant alteration of the acyl composition has occurred. To wval;uate the underlying cause of this type of inhibition, the effect of linolenic acid on cell growth and protein synthesis was examined. When cells were cultured in 100 μM of this fatty acid, both growth and protein synthesis were retarded by 28% and 19%, respectively. Since opiate receptors are proteineous in nature, a reduction of protein synthesis may partially account for the loss of opioid binding activity. On the other hand, an increase of membrane fluidity is known to affect a number of cellular functions, including ligan-receptor recognition. Whether this can offer a satisfactory explanation for our obervations remains to be established.  相似文献   

8.
We studied the influence of [DAla4]-dermorphin ([DAla4]-DM), its fragments ([DAla4]-DM2–7, [DAla4]-DM3–7, and [DAla4]-DM4–7) and analogs ([Trp1, DAla4]-DM, [DArg2, DAla4]-DM, and [DOrn2, DAla4]-DM) on the functional status of the thermoregulation system in rats at different thermal environments: cold (4–6°C), thermoneutral (27–28°C) and hot (31–32°C). [DAla4]-DM administration proved to induce temperature- and dose-dependent hypothermia and vasomotor responses. No activity of the peptide was observed in the hot environment. N-terminal shortening of the peptide inhibits its thermoregulatory activity. Tyr1 to Trp1 substitution nearly completely suppressed the thermoregulatory effects. DAla2 to DArg2 substitution decreased the hypothermic effect and only the vasodilatory response was observed in the comfortable environment. DAla2 to DOrn2 substitution completely suppressed the hypothermic effect in the cold environment and considerably attenuated the vasodilatory response in the thermoneutral environment.  相似文献   

9.
A series of D-amino acid-substituted analogs of the opiate peptide, methionine5-enkephalin, were synthesized by solid-phase methods and tested for their abilities to inhibit electrically-evoked contractions of mouse vasa deferentia and to compete with tritiated enkephalin for opiate receptors on particulate fractions isolated from homogenates of rat brain. [D-Ala2]-enkephalin and [D-Ala2]-enkephalin amide were found to be the most potent peptides in both assay systems, being about 1000% active in the vas deferens bioassay and 120% and 150% active, respectively, in the stereospecific binding test relative to methionine5-enkephalin itself. In comparison, [D-Met5]-, [D-Tyr1]-, [D-Leu2]-, [D-Phe2]-, [D-Ala3]-, and [D-Phe4]-enkephalin had not more than 10% activity. The stabilization of the β-bend conformation of methionine5-enkephalin by the substitution of D-alanine in position 2 of the peptide chain may contribute to the high activities of the [D-Ala2]-analogs.  相似文献   

10.
The effects of prolyl-leucyl-glycinamide and cyclo (leucyl-glycine) on morphine-induced antinociception in mice and on in vitro binding of 3H-ligands for opiate receptor subtypes (μ, δ and κ) the mouse brain homogenate were determined. Subcutaneous administration of either of the above peptides (1, 2, and 4 mg/kg) 10 min prior to the injection of morphine did not affect morphine-induced antinociception as evidenced by the identical ED50 values of morphine in vehicle and peptide treated groups. The binding of 3H-dihydromorphine and 3H-naloxone ( μ receptors), 3HDAla2DLeu5-enkephalin (δ receptors), and 3H-ethylketocyclazocine (κ receptors) to opiate receptors in the mouse brain homogenate was also unaffected by both the peptides over a large concentration range. It is concluded that these peptides do not interact with brain opiate receptors.  相似文献   

11.
[Tyr-3,5-3H]1,d-Ala2, Leu5-enkephalin ([3H]DALA) was used for labeling the opioid receptors of rat brain plasma membranes. The labeled ligand was prepared from [Tyr-3,5-diiodo]1,d-Ala2, Leu5-enkephalin by catalytic reductive dehalogenation in the presence of Pd catalyst. The resulting [Tyr-3,5-3H]1,d-Ala2, Leu5-enkephalin had a specific activity of 37.3 Ci/mmol. In the binding experiments steady-state level was reached at 24°C within 45 min. The pseudo first order association rate constant was 0.1 min–1. The dissociation of the receptor-ligand complex was biphasic with k–1-s of 0.009 and 0.025 min–1. The existence of two binding sites was proved by equilibrium studies. The high affinity site showed aK D=0.7 nM andB max=60 fmol/mg protein; the low affinity site had aK D=5 nM andB max=160 fmol/mg protein. A series of opioid peptides inhibited [3H]DALA binding more efficiently than morphine-like drugs suggesting that labeled ligand binds preferentially to the subtype of opioid receptors. Modification of the original peptides either at the C or N terminal ends of the molecules resulted in a decrease in their affinity.  相似文献   

12.
The specific binding of (3H)ethylketocyclazocine to frog brain membrane preparation was enhanced in the presence of sodium ions administered as NaCl, both at 0 °C and at room temperature. The optimal NaCl concentration was 25 mM at 0 °C and 50 mM at 24 °C. MgCl2 inhibited the [3H]ethylketocyclazocine binding. Two binding sites (high and low affinity) were established with [3H]ethylketocyclazocine as ligand by equilibrium binding studies. Addition of NaCl increased the Bmax of the low-affinity site more than that of the high-affinity site at both temperatures. Affinities were higher at 0 °C than at 24 °C. TheK D values were not significantly influenced by sodium ions. The dissimilarities between the rat and frog brain opioid receptors in [3H]ethylketocyclazocine binding are attributed to the different lipid composition of the two membranes.Abbreviations used DAGO D-Ala2-(Me)Phe4-Gly-ol5-enkephalin - DALE d-Ala2-l-Leu5-enkephalin - DADLE d-Ala2-d-Leu5-enkephalin - EKC Ethylketocyclazocine - DHM Dihydromorphine - BIT 2-(p-ethoxybenzyl)1-diethylaminoethyl-5-isothiocyanobenzimidazole isothiocyanate - FIT Fentanyl isothiocyanate  相似文献   

13.
M Wüster  R Schulz  A Herz 《Life sciences》1980,27(2):163-170
Chronic treatment of mice with specific opioids results in the development of tolerance of particular opiate receptors in the mouse vas deferens (MVD). Accordingly, the infusion of animals with the specific δ-receptor ligand [D-Ala2,D-Leu5]-enkephalin (DADL) or the potent μ-agonist sufentanyl (SUF) produces MVD highly tolerant to δ- and μ-agonists, respectively. Investigating a series of opioids in these preparations provides unequivocal evidence for the simultaneous existence of δ- and μ-receptors in the MVD. Thus, the possibility exists to obtain vasa deferentia, which almost exclusively contain either μ- or δ-opiate receptors. In combination with the rat vas deferens (RVD), a supposedly selective ε-receptor preparation, useful tools are provided for the classification of opioids according to their preference for the μ-, δ- and ε-type of the opiate receptors.  相似文献   

14.
We studied the effect of C-terminal truncation of the dermorphin (DM) molecule and analogs of its N-terminal tetrapeptide, [DOrn2]-DM1–4, [DArg2]-DM1–4, [DAla4]-DM1–4, [DArg2, DAla4]-DM1–4, Arg-DM1–4, Arg-[DArg2]-DM1–4, Arg-[DAla4]-DM1–4, and Arg-[DArg2, DAla4]-DM1–4, on the functional status of the thermoregulation system in rats at different ambient temperatures. For the first time, we demonstrate that the N-terminal tetrapeptide is the minimal fragment with the hypothermic effect. Only the N-terminal octapeptide exerted the vasomotor effect. Amino acid substitutions in the tetrapeptide affected its hypothermic effect. [DArg2]-DM1–4 and [DArg2, DAla4]-DM1–4 had the greatest effect. Addition of Arg to the N-terminus of DM1–4 analogs changed their thermoregulatory activity. The greatest thermoregulatory effect was observed for Arg-[DArg2]-DM1–4 and Arg-[DArg2, DAla4]-DM1–4.  相似文献   

15.
Results of an extensive theoretical conformational analysis of the opiate pentapeptide Met5-enkephalin are compared to spectroscopic data. The comparison enables us to propose a consistent model for the conformational state of Met5-enkephalin in solution. The empirical energy calculations suggest that the molecule exists in aqueous solution in a small number of folded and extended families of conformers. The predominance of βII′-turns at the level of the glycine residues at positions 2 and 3 is the most significant characteristic of folded conformers. A highly populated conformer of Met5-enkephalin is shown to possess structural features in common with the very potent narcotic etonitazene.  相似文献   

16.
In a previous paper, and opiate receptors were shown to be co-localized on the same cell in enriched primary cultures of astroglia from neonatal rat cerebral cortex. Activation of the receptors inhibited adenylate cyclase. In this work, the presence of opiate receptors was investigated in astroglial primary cultures from neonatal rat striatum and brain stem. Cyclic adenosine 3, 5-monophosphate accumulation was quantified in the presence of different opioid receptor ligands after stimulation of the cyclic adenosine 3,5-monophosphate system with forskolin. Morphine was used as a receptor agonist. [d-Ala2, D-Leu5]-enkephalin or[d-Pen2,d-Pen5]-enkephalin were used as receptor agonists and dynorphin 1–13 or U-50,488H were used as receptor agonists. Specific antagonists for the respective receptors were used. After striatum or brain stem cultures had been incubated in 10–9–10–5M of each [d-Ala2,d-Leu5]-enkephalin, [d-Pen2, D-Pen5]-enkephalin and Dynorphin 1–13 or U-50,488H, dose related inhibitions of the 10–5M rorskolin stimulated cyclic adenosine 3,5-monophosphate accumulation were observed. The changes were reversed to the forskolin-induced control level in the presence of the respective antagonists. 10–9–10–5M morphine did not significantly change the forskolin-induced accumulation of cyclic adenosine 3,5-monophosphate in the cultures studied. Furthermore, cultures from cerebral cortex, striatum or brain stem were incubated with isoproterenol alone or together with morphine or [d-Ala2,d-Leu5]-enkephalin. Isoproterenol stimulated cyclic adenosine 3,5-monophosphate accumulation more prominently in the cerebral cortex and striatum cultures than in the brain stem cultures. Morphine did not influence isoproterenol-induced cyclic adenosine 3,5-monophosphate accumulation, while [d-Ala2,d-Leu5]-enkephalin inhibited the accumulation. The results indicate that astroglial cells in primary cultures from striatum, brain stem and cerebral cortex express andk opioid receptors linked to the adenylate cyclase/cyclic adenosine 3,5-monophosphate system. No receptors were detected, however, in the present model. Aspects of the relation between the expression of opioid peptides and opioid receptors are discussed, while speculations are also made on the functional aspects of opioid receptors on astroglia.  相似文献   

17.
The cardiovascular and respiratory responses to relatively specific μ or δ agonists microinjected (0.5 μl/kg) into the region of the nucleus of tractus solitarius (NTS) were examined in anesthetized cats. Blood pressure, heart rate, and respiratory rate were monitored for 30 min after the microinjection of opioid compounds or saline vehicle. The δ agonist, (d-Ala2,d-Leu5)-enkephalin (10–100 nmol/kg) elicited dose-dependent decreases in blood pressure, heart rate, and respiratory rate which were naloxone reversible. In contrast the μ agonists, morphine (10–54 nmol/kg) and morphiceptin (100–320 nmol/kg) had no effect on blood pressure or respiratory rate; yet, naloxone elicited pressor responses in animals pretreated with these μ agonists. A receptor-binding assay demonstrated a predominance of μ sites in the NTS. These data show that the δ opiate agonist is more effective than μ agonists in modifying cardiovascular variables in the NTS; we suggest caution in relating specific cardiovascular function to receptor subtypes defined by binding assays.  相似文献   

18.
Abstract

Previous work has suggested the existence of subtypes of the delta opioid receptor (DOR) which have been termed δ1 and δ2. [D-Ala2, Glu4]deltorphin has been suggested to selectively elicit antinociception via the δ2 receptor while [D-Pen2, D-Pen5]enkephalin (DPDPE) is thought to act via the δ1 receptor. Treatment with an antisense oligodeoxynucleotide (oligo) directed towards the N-terminal portion of the cloned DOR has been demonstrated to selectively inhibit the antinociceptive actions of [D-Ala2, Glu4]deltorphin, but not of DPDPE, suggesting that the cloned DOR corresponds to that pharmacologically defined as δ2. Here, an antisense oligo (or a mismatch sequence) was designed to target a conserved region of the cloned μ δ and opioid receptor. These oligos were employed in order to determine whether the antinociceptive effects of [DAla2, Glu4]deltorphin, as well as DPDPE, could be inhibited. The data indicate that the antinociceptive actions of both ligands were inhibited by treatment with this antisense, but not with the mismatch oligo. Taken together, the results of the treatments with oligos directed towards the N-terminal portion of the cloned DOR and with that directed to the conserved region of the opioid receptors suggest that (a) DPDPE effects are mediated by a subtype of the DOR which shares a domain common to the cloned opioid receptors, and (b) the N-terminal region differs between these putative DOR subtypes.  相似文献   

19.
Using [3H]naloxone at a concentration of 4.5 nm , the potent opiate agonist etorphine as well as the potent antagonist diprenorphine displace only about 75% of specific naloxone binding P2 fractions from rat whole forebrain, without additive effect. Several other opiates and antagonists completely displace specific naloxone binding. This indicates that etorphine and diprenorphine specifically bind to one and the same naloxone binding site (type I) while leaving another naloxone binding site (type II) unaffected. Type I binding sites are much more thermo-labile than type II. [3H]Naloxone binding to type I sites is unaffected by incubation temperature in the range 10 to 25°C. while binding type II sites decreases rapidly with increasing incubation temperature, no specific type II binding being detectable at or above 20°C. The two naloxone receptor types also differ with respect to pH dependence, and affinity for naloxone with types I and II having affinity constants (Kd) of 2 and 16 nm , respectively, at 0°C. The two binding sites have different regional distributions with high relative levels of type II receptors in cerebellum and low relative levels in pons-medulla and striatum. In whole rat brain there are about 4 times as many type II receptors as type I. These results suggest that naloxone and several other opiate agonists and antagonists bind to two distinct receptor types which are probably not agonist/antagonist aspects of the same receptor.  相似文献   

20.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号