首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient receptor potential subfamily A member 1 (TRPA1) is a non-selective cation channel implicated in the pathogenesis of several airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Most of the research on TRPA1 focuses on its expression and function in neuronal context; studies investigating non-neuronal expression of TRPA1 are lacking. In the present study, we show functional expression of TRPA1 in human lung fibroblast cells (CCD19-Lu) and human pulmonary alveolar epithelial cell line (A549). We demonstrate TRPA1 expression at both mRNA and protein levels in these cell types. TRPA1 selective agonists like allyl isothiocyanate (AITC), 4-hydroxynonenal (4-HNE), crotonaldehyde and zinc, induced a concentration-dependent increase in Ca+2 influx in CCD19-Lu and A549 cells. AITC-induced Ca+2 influx was inhibited by Ruthenium red (RR), a TRP channel pore blocker, and by GRC 17536, a TRPA1 specific antagonist. Furthermore, we also provide evidence that activation of the TRPA1 receptor by TRPA1 selective agonists promotes release of the chemokine IL-8 in CCD19-Lu and A549 cells. The IL-8 release in response to TRPA1 agonists was attenuated by TRPA1 selective antagonists. In conclusion, we demonstrate here for the first time that TRPA1 is functionally expressed in cultured human lung fibroblast cells (CCD19-Lu) and human alveolar epithelial cell line (A549) and may have a potential role in modulating release of this important chemokine in inflamed airways.  相似文献   

2.
Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca2+ concentration ([Ca2+]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca2+]c, which was completely attenuated by removing Ca2+ from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca2+]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca2+]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.  相似文献   

3.
The cation channel TRPA1 functions as a chemosensory protein and is directly activated by a number of noxious inhalants. A pulmonary expression of TRPA1 has been described in sensory nerve endings and its stimulation leads to the acceleration of inflammatory responses in the lung. Whereas the function of TRPA1 in neuronal cells is well defined, only few reports exist suggesting a role in epithelial cells. The aim of the present study was therefore (1) to evaluate the expression of TRPA1 in pulmonary epithelial cell lines, (2) to characterize TRPA1-promoted signaling in these cells, and (3) to study the extra-neuronal expression of this channel in lung tissue sections. Our results revealed that the widely used alveolar type II cell line A549 expresses TRPA1 at the mRNA and protein level. Furthermore, stimulating A549 cells with known TRPA1 activators (i.e., allyl isothiocyanate) led to an increase in intracellular calcium levels, which was sensitive to the TRPA1 blocker ruthenium red. Investigating TRPA1 coupled downstream signaling cascades it was found that TRPA1 activation elicited a stimulation of ERK1/2 whereas other MAP kinases were not affected. Finally, using epithelial as well as neuronal markers in immunohistochemical approaches, a non-neuronal TRPA1 protein expression was detected in distal parts of the porcine lung epithelium, which was also found examining human lung sections. TRPA1-positive staining co-localized with both epithelial and neuronal markers underlining the observed epithelial expression pattern. Our findings of a functional expression of TRPA1 in pulmonary epithelial cells provide causal evidence for a non-neuronal TRPA1-mediated control of inflammatory responses elicited upon TRPA1-mediated registration of toxic inhalants in vivo.  相似文献   

4.
Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) and vanilloid subtype-1 (TRPV1) are structurally related, non-selective cation channels that show a high permeability to calcium. Previous studies indicate that TRP channels play a prominent role in the regulation of cardiovascular dynamics and homeostasis, but also contribute to the pathophysiology of many diseases and disorders within the cardiovascular system. However, no studies to date have identified the functional expression and/or intracellular localization of TRPA1 in primary adult mouse ventricular cardiomyocytes (CMs). Although TRPV1 has been implicated in the regulation of cardiac function, there is a paucity of information regarding functional expression and localization of TRPV1 in adult CMs. Our current studies demonstrate that TRPA1 and TRPV1 ion channels are co-expressed at the protein level in CMs and both channels are expressed throughout the endocardium, myocardium and epicardium. Moreover, immunocytochemical localization demonstrates that both channels predominantly colocalize at the Z-discs, costameres and intercalated discs. Furthermore, specific TRPA1 and TRPV1 agonists elicit dose-dependent, transient rises in intracellular free calcium concentration ([Ca2+]i) that are abolished in CMs obtained from TRPA1?/? and TRPV1?/? mice. Similarly, we observed a dose-dependent attenuation of the TRPA1 and TRPV1 agonist-induced increase in [Ca2+]i when WT CMs were pretreated with increasing concentrations of selective TRPA1 or TRPV1 channel antagonists. In summary, these findings demonstrate functional expression and the precise ultrastructural localization of TRPA1 and TRPV1 ion channels in freshly isolated mouse CMs. Crosstalk between TRPA1 and TRPV1 may be important in mediating cellular signaling events in cardiac muscle.  相似文献   

5.
《Cell calcium》2014,55(4):208-218
Merkel cells (MCs) have been proposed to form a part of the MC-neurite complex with sensory neurons. Many transient receptor potential (TRP) channels have been identified in mammals; however, the activation properties of these channels in oral mucosal MCs remain to be clarified. We investigated the biophysical and pharmacological properties of TRP vanilloid (TRPV)-1, TRPV2, TRPV4, TRP ankyrin (TRPA)-1, and TRP melastatin (TRPM)-8 channels, which are sensitive to osmotic and mechanical stimuli by measurement of intracellular free Ca2+ concentration ([Ca2+]i) using fura-2. We also analyzed their localization patterns through immunofluorescence. MCs showed immunoreaction for TRPV1, TRPV2, TRPV4, TRPA1, and TRPM8 channels. In the presence of extracellular Ca2+, the hypotonic test solution evoked Ca2+ influx. The [Ca2+]i increases were inhibited by TRPV1, TRPV2, TRPV4, or TRPA1 channel antagonists, but not by the TRPM8 channel antagonist. Application of TRPV1, TRPV2, TRPV4, TRPA1, or TRPM8 channel selective agonists elicited transient increases in [Ca2+]i only in the presence of extracellular Ca2+. The results indicate that membrane stretching in MCs activates TRPV1, TRPV2, TRPV4, and TRPA1 channels, that it may be involved in synaptic transmission to sensory neurons, and that MCs could contribute to the mechanosensory transduction sequence.  相似文献   

6.
7.
The action of two potent store operated Ca2+ entry (SOCE) inhibitors, ML-9 and GdCl3 on Ca2+ fluxes induced by the pro-inflammatory agonists FMLP, PAF, LTB4 as well as the receptor-independent stimulus thapsigargin has not been documented in human neutrophils. In this study, ML-9 enhanced both release and subsequent Ca2+ influx in response to agonists whereas it enhanced Ca2+ release by thapsigargin, but inhibited Ca2+ influx. In contrast, 1 μM GdCl3 completely inhibited Ca2+ influx in response to thapsigargin, but only partially blocked Ca2+ influx after agonist stimulation. These results strongly suggest a major role for receptor-operated Ca2+ influx in human neutrophils.  相似文献   

8.
9.
Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.  相似文献   

10.
TRPA1 is a non-selective Ca2 + permeable channel located in the plasma membrane that functions as a cellular sensor detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. TRPA1 has been shown to influence a broad range of physiological processes that involve Ca2 +-dependent signaling pathways. Here we report that TRPA1 is expressed in MEG01 but not in platelets at the protein level. MEG01 cells maturation induced by PMA results in attenuation of TRPA1 protein expression and enhances thapsigargin-evoked Ca2 + entry without altering the release of Ca2 + from intracellular stores. Inhibition of TRPA1 by HC-030031 results in enhancement of both thrombin- and thapsigargin-stimulated Ca2 + entry. Co-immunoprecipitation experiments revealed that TRPA1 associates with STIM1, as well as Orai1, TRPC1 and TRPC6. Downregulation of TRPA1 expression by MEG01 maturation, as well as pharmacological inhibition of TRPA1 by HC-030031, results in enhancement of the association between STIM1 and Orai1. Altogether, these findings provide evidence for a new and interesting function of TRPA1 in cellular function associated to the regulation of agonist-induced Ca2 + entry by the modulation of STIM1/Orai1 interaction.  相似文献   

11.
We searched in this study for novel agonists of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in pepper, focusing attention on 19 compounds contained in black pepper. Almost all the compounds in HEK cells heterogeneously expressed TRPV1 or TRPA1, increased the intracellular Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner. Among these, piperine, isopiperine, isochavicine, piperanine, pipernonaline, dehydropipernonaline, retrofractamide C, piperolein A, and piperolein B relatively strongly activated TRPV1. The EC50 values of these compounds for TRPV1 were 0.6–128 μM. Piperine, isopiperine, isochavicine, piperanine, piperolein A, piperolein B, and N-isobutyl-(2E,4E)-tetradeca-2,4-diamide also relatively strongly activated TRPA1, the EC50 values of these compounds for TRPA1 were 7.8–148 μM. The Ca2+ responses of these compounds for TRPV1 and TRPA1 were significantly suppressed by co-applying each antagonist. We identified in this study new transient receptor potential (TRP) agonists present in black pepper and found that piperine, isopiperine, isochavicine, piperanine, piperolein A, and piperolein B activated both TRPV1 and TRPA1.  相似文献   

12.
Store-operated Ca2+ channels (SOCs) are activated by depletion of intracellular Ca2+ stores following agonist-mediated Ca2+ release. Previously we demonstrated that Ca2+ influx through SOCs elicits exocytosis efficiently in pancreatic duct epithelial cells (PDEC). Here we describe the biophysical, pharmacological, and molecular properties of the duct epithelial SOCs using Ca2+ imaging, whole-cell patch-clamp, and molecular biology. In PDEC, agonists of purinergic, muscarinic, and adrenergic receptors coupled to phospholipase C activated SOC-mediated Ca2+ influx as Ca2+ was released from intracellular stores. Direct measurement of [Ca2+] in the ER showed that SOCs greatly slowed depletion of the ER. Using IP3 or thapsigargin in the patch pipette elicited inwardly rectifying SOC currents. The currents increased ∼8-fold after removal of extracellular divalent cations, suggesting competitive permeation between mono- and divalent cations. The current was completely blocked by high doses of La3+ and 2-aminoethoxydiphenyl borate (2-APB) but only partially depressed by SKF-96365. In polarized PDEC, SOCs were localized specifically to the basolateral membrane. RT-PCR screening revealed the expression of both STIM and Orai proteins for the formation of SOCs in PDEC. By expression of fluorescent STIM1 and Orai1 proteins in PDEC, we confirmed that colocalization of the two proteins increases after store depletion. In conclusion, basolateral Ca2+ entry through SOCs fills internal Ca2+ stores depleted by external stimuli and will facilitate cellular processes dependent on cytoplasmic Ca2+ such as salt and mucin secretion from the exocrine pancreatic ducts.  相似文献   

13.
《Cell calcium》2014,55(4):200-207
Transient receptor potential A1 (TRPA1) is widely expressed throughout the human and animal organism, including the dorsal root ganglia as well as the bladder, stomach and small intestine. Here, we examined the effect of three platelet aggregation inhibitors on TRPA1: ticlopidine, clopidogrel and prasugrel. Utilising fluorometric Ca2+ influx analysis and electrophysiological whole cell measurements in TRPA1-expressing HEK293 and in human enterochromaffin-like QGP-1 cells, we found that ticlopidine, clopidogrel and prasugrel are direct activators of TRPA1. Although this polymodal channel commonly contributes to the perception of pain, temperature and chemical irritants, recent studies provide evidence for its involvement in the release of serotonin (5-HT) from enterochromaffin cells. Therefore, we further investigated the ability of ticlopidine, clopidogrel and prasugrel to stimulate 5-HT release from QGP-1 cells. We could determine 5-HT in supernatants from cultured QGP-1 cells upon treatment with ticlopidine and clopidogrel but not with prasugrel. These findings indicate that a robust TRPA1 activation by ticlopidine and clopidogrel correlates with the stimulatory effect on the secretion of 5-HT. As recipients of ticlopidine and clopidogrel frequently complain about gastrointestinal adverse events such as nausea, vomiting and diarrhoea, an activation of TRPA1 may contribute to adverse effects of such drugs in the digestive system.  相似文献   

14.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   

15.
As a Ca2+ binding protein, calreticulin (CRT) has many functions and plays an important role in a variety of tumors. The role of CRT in TGF-β1-induced EMT is unknown. In this study, we demonstrated in vitro that TGF-β1-induced EMT elevated the expression of CRT in A549 lung cancer cells. Subsequently, we confirmed that overexpression CRT had no capacity to induce A549 cells EMT alone, but successfully enhanced TGF-β1-induced-EMT. Furthermore, knockdown of CRT in A549 cells significantly suppressed changes of EMT marks expression induced by TGF-β1. On treatment with TGF-β1, overexpression of CRT could enhance the phosphorylation of both Smad2 and Smad3. Consistently, the knockdown of CRT by siRNA-CRT could inhibit Smad signaling pathway activated by TGF-β1. These results indicated that CRT regulates EMT induced by TGF-β1 through Smad signaling pathway. Finally, TGF-β1-induced-EMT enhanced store-operated Ca2+ influx in A549 cells. CRT knockdown was able to abolish the effect of TGF-β1 on thapsigargin (TG) −induced Ca2+ release, but had failed to reduce store-operated Ca2+ influx. The alteration of intracellular Ca2+ concentration by TG or BAPTA-AM was able to regulate EMT induced by TGF-β1 through Smad signaling pathway. Together, these data identify that CRT regulates TGF-β1-induced-EMT through modulating Smad signaling. Furthermore, TGF-β1-induced-EMT is highly calcium-dependent, CRT was partly involved in it.  相似文献   

16.
We studied the release of [3H]d-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca2+-dependent and Ca2+-independent release of [3H]d-aspartate. In Ca2+-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the release of [3H]d-aspartate with the following rank order of potency: kainate>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)∼N-methyl-d-aspartate (NMDA). In media containing 1 mM CaCl2 the release of [3H]d-aspartate evoked by NMDA, kainate and AMPA was increased by about 112%, 20% and 39%, respectively, as compared to the release evoked by the same agonists in Ca2+-free medium. NMDA was the most potent agonist in stimulating the Ca2+-dependent release of [3H]d-aspartate, possibly by exocytosis, and AMPA was as potent as kainate. The Ca2+-dependent release of [3H]d-aspartate evoked by kainate was dependent on the influx of Ca2+ through the receptor associated channel, as well as through the N- (ω-Conotoxin GVIA-sensitive) and L- (nitrendipine-sensitive)type voltage-sensitive Ca2+ channels (VSCC). The exocytotic release of [3H]d-aspartate evoked by AMPA relied exclusively on Ca2+ entry through the L-type VSCC, whereas the effect of NMDA was partially mediated by the influx of Ca2+ through the receptor-associated channel, but not through L- or N-type VSCC. Thus, activation of these different glutamate receptors under physiological conditions is expected to cause the release of cytosolic and vesicular glutamate, and the routes of Ca2+ entry modulating vesicular release may be selectively recruited.  相似文献   

17.
We searched for novel agonists of TRP receptors especially for TRPA1 and TRPV1 in foods. We focused attention on garlic compounds, diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). In TRPA1 or TRPV1 heterogeneously expressed CHO cells, all of those compounds increased [Ca2+]i in concentration-dependent manner. The EC50 values of DADS and DATS were similar to that of allyl isothiocyanate (AITC) and that of DAS was 170-fold larger than that of AITC. Maximum responses of these sulfides were equal to that of AITC. The EC50 values of these compounds for TRPV1 were around 100 μM against that of capsaicin (CAP), 25.6 nM and maximum responses of garlic compounds were half to that of CAP. The Ca2+ responses were significantly suppressed by co-application of antagonist. We conclude that DAS, DADS, and DATS are agonist of both TRPA1 and TRPV1 but with high affinity for TRPA1.  相似文献   

18.
Uniquely expressed in the colon, MS4A12 exhibits store-operated Ca2+ entry (SOCE) activity. However, compared to MS4A1 (CD20), a Ca2+ channel and ideal target for successful leukaemia immunotherapy, MS4A12 has rarely been studied. In this study, we investigated the involvement of MS4A12 in Ca2+ influx and expression changes in MS4A12 in human colonic malignancy. Fluorescence of GCaMP-fused MS4A12 (GCaMP-M12) was evaluated to analyse MS4A12 activity in Ca2+ influx. Plasma membrane expression of GCaMP-M12 was achieved by homo- or hetero-complex formation with no-tagged MS4A12 (nt-M12) or Orai1, respectively. GCaMP-M12 fluorescence in plasma membrane increased only after thapsigargin-induced depletion of endoplasmic reticulum Ca2+ stores, and this fluorescence was inhibited by typical SOCE inhibitors and siRNA for Orai1. Furthermore, GCaMP-MS4A12 and Orai1 co-transfection elicited greater plasma membrane fluorescence than GCaMP-M12 co-transfected with nt-M12. Interestingly, the fluorescence of GCaMP-M12 was decreased by STIM1 over-expression, while increased by siRNA for STIM1 in the presence of thapsigargin and extracellular Ca2+. Moreover, immunoprecipitation assay revealed that Orai1 co-expression decreased protein interactions between MS4A12 and STIM1. In human colon tissue, MS4A12 was expressed in the apical region of the colonic epithelium, although its expression was dramatically decreased in colon cancer tissues. In conclusion, we propose that MS4A12 contributes to SOCE through complex formation with Orai1, but does not cooperate with STIM1. Additionally, we discovered that MS4A12 is expressed in the apical membrane of the colonic epithelium and that its expression is decreased with cancer progression.  相似文献   

19.
Mycobacterial mammalian cell entry protein 1A (Mce1A) is involved in the uptake of bacteria in non-phagocytic cells and also possibly in granuloma formation. However, it has not been clarified whether the interaction between mycobacterial Mce1A and epithelial cell induces chemokine and cytokine production which is required for granuloma formation. To this end, we infected A549 alveolar epithelial cells in vitro with E. coli expressing Mce1A on the cell surface and examined the resultant chemokine/cytokine production. Mce1A promoted bacterial adherence and internalization of E. coli into A549 cells, and these recombinant bacteria induced high levels of MCP-1 and IL-8 production, compared to E. coli harboring the plasmid vector alone. Chemokine production was enhanced by the internalization of recombinant E. coli expressing Mce1A because cytochalasin D treatment partially inhibited MCP-1 and IL-8 production. However, Mce1A-coated latex beads did not induce the chemokine production. These results suggest that although Mce1A does not induce production of chemokines, it may promote chemokine induction by augmenting the interaction between bacteria and epithelial cells.  相似文献   

20.
Multiple mis-sense variants of TRPA1 (transient receptor potential A1) and TRPM8 (transient receptor potential M8) are recorded in the human genome single nt polymorphism (SNP) database, but their potential impact on channel signalling in patho-physiology is not fully explored. Variants, mostly quite rare in the general human population, alter sites in different structural domains of these homo-tetrameric ion channel proteins. The effects of individual SNPs affecting the large cytoplasmic N-terminal domain have not been completely documented for TRPM8 or TRPA1. We examined the Ca2+ signalling properties of a short-list of eight variants affecting the N-terminal domain by individual expression in human embryonic kidney HEK293 or neuroblastoma (SH-SY5Y) cell lines (four SNP variants for TRPM8: G150R, K423N, R475C, R485W and four for TRPA1: Y69C, A366D, E477K, D573A). These were compared with TRPA1 SNP variants affecting intracellular loops located beyond the N-terminal domain and associated with gain of function (such as increased sensitivity to agonists: TRPA1 R797T and N855S). A substitution in TRPA1 (Y69C) exhibited high expression/sensitivity to agonists (high iCa2+max (maximum level of intracellular calcium ion), similar to R797T, but less sensitive than N855S), whereas each of the other non-conservative substitutions exhibited poor signalling response (low iCa2+max). Responses from these poorly expressed variants could be salvaged, to different extents, by pre-treating cells with the Src (Src protein) family inhibitor protein kinase inhibitor PP2 (PP2: 4-Amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo[3,4-d]pyrimidine, 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), or with micromolar Zn2+. The TRPA1 variants and several experimental mutants (TRPA1 Y97F, Y226F and YY654–655FF) expressed poorly in SH-SY5Y compared with HEK293 cells. More in-depth studies are needed to identify SNP variants eliciting gain of function in these TRP (transient receptor potential) channels and to assess their roles in medical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号