首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The present study describes the inhibition of [3H]SCH-23390 binding to striatal dopamine D1 receptors in the presence of ascorbic acid. Specific [3H]SCH-23390 binding was maximally inhibited by 0.1 mM ascorbic acid. As determined by Scatchard analysis the binding in the presence of 0.01, 0.1, or 10 mM ascorbic acid was consonant with non-competitive inhibition with a 26%, 38%, or 19% decrease, respectively, in the maximal number of binding sites; the affinity of these binding sites was not affected. Inhibition of [3H]SCH-23390 binding by ascorbic acid was reversible; striatal homogenates incubated with 0.1 mM ascorbic acid and sebsequently washed free of ascorbic acid had the same Scatchard parameters as untreated preparations.  相似文献   

2.
Specific 3H-sulpiride binding to rat striatal membranes shows an absolute requirement for the presence of sodium ions in the incubation buffer. Potassium, rubidium and caesium ions were unable to initiate specific 3H-sulpiride binding in a sodium free buffer, and lithium ionscould only partially replace sodium ions. Specific 3H-spiperone binding was unaffected by variation of the cation content of the incubation buffer. The alteration in 3H-sulpiride binding caused by sodium and lithium ions was due predominantly to an increase in the number of available binding sites, rather than to altered receptor affinity. Sodium ions may be essential for the accessability of 3H-sulpiride to a single site labelled also by 3H-spiperone. However, the Ki value for sulpiride displacement of 3H-spiperone in the presence of sodium ions was 20 times greater than the KD value for 3H-sulpiride binding. So, 3H-sulpiride may interact with a highly sodium dependent binding site distinct from that labelled by 3H-spiperone.  相似文献   

3.
Abstract

The binding characteristics of the dopaminergic ligand, 3H- spiperone, were compared in renal cortical and striatal membrane homogenates of the rat. This ligand labelled a single class of high affinity binding sites in striatum with an apparent dissociation constant (Kd) of 0.13 nM and a maximal number of binding sites (Bmax) of 890 fmol/mg protein representing D-2 receptors. In the renal cortex, 3H-spiperone identified a population of binding sites with a Bmax and a Kd of 310 fmol/mg protein and 5.1 nM, respectively. The antagonist displacing profile suggests the dopaminergic nature of the renal binding site. The affinities of dopamine antagonists for the peripheral 3H-spiperone binding site were in general in the micromolar range while the affinities of D-2 or D-2/D-1 dopamine antagonists in striatum were in the nanomolar range. Moreover, these sites showed differential stereoselectivity for (+)- and (-)-isomers of sulpiride. In conclusion, the presence of a D-2/DA-2 dopamine receptor population in renal cortex could not be confirmed. The pharmacological properties of the peripheral 3H-spiperone binding site are also different from the DA-1 receptor but seem to resemble those previously reported for dopamine receptors in sympathetic ganglia and adrenal medulla.  相似文献   

4.
The neuroleptic ligand 3H-spiperone binds saturably to areas of human and rat brain which are rich in either dopamine (DA) or 5- hydroxytryptamine (5-HT). 2-Amino-6, 7-dihydroxytetralin (ADTN) and cinanserin were found to displace 3H-spiperone selectively from DA and 5-HT receptor sites respectively. An investigation of the DA and 5-HT receptor components of 3H-spiperone binding in nucleus accumbens samples from 26 post-mortem schizophrenic brains failed to reveal any abnormality.  相似文献   

5.
《Life sciences》1995,57(18):PL275-PL283
Binding of 3H-spiperone and 3H-raclopride to membranes of cells stably-transfected with a human dopamine D2 receptor clone was investigated, as was that of 3H-spiperone to those stably-transfected with a human D4 receptor clone. 3H-spiperone and 3H-raclopride labeled the same number of sites in the D2 receptor preparation. The inhibition of binding by clozapine, spiperone, (−) eticlopride, haloperidol and the novel substituted benzamide 1192U90 was also investigated. Clozapine and 1192U90 showed greater inhibition of 3H-raclopride binding than 3H-spiperone binding to the D2 receptor. Comparison with inhibition of 3H-spiperone binding to the D4 receptor revealed that clozapine and 1192U90 displayed apparent selectivity (as assessed by Ki ratios) for the D4 receptor when compared with binding of 3H-spiperone, but not 3H-raclopride, to the D2 receptor.  相似文献   

6.
Changes in the levels of binding of 3H-SCH-23390, a vertebrate D1 dopamine receptor ligand, and 3H-spiperone, a vertebrate D2 dopamine receptor ligand were investigated in the brain of the worker honey bee during metamorphic adult development and during the lifetime of the adult bee. Age-related fluctuations in binding levels were markedly different for these two ligands. 3H-SCH-23390 and 3H-spiperone binding sites were present at low levels during metamorphic adult development. After adult emergence, however, 3H-SCH-23390 binding levels, in contrast to those of 3H-spiperone, increased significantly. Within the first 48 h of adult life 3H-SCH-23390 binding reached a level not significantly different from that detected in forager bees. No significant fluctuations in the levels of 3H-spiperone binding were observed during the adult lifetime of the bee. Measurements of dopamine levels in the brains of pupal and adult bees revealed no direct correlation between fluctuations in endogenous amine levels and the amount of binding of either 3H-SCH-23390 or 3H-spiperone. These results provide evidence for subtype-specific patterns of expression of dopamine receptors in the insect brain and show that D1- and D2-like receptors are expressed not only in the adult CNS, but also in the developing brain of the bee. Accepted: 4 June 1997  相似文献   

7.
After intraperitoneal injections of 3H-spiperone into the rat, brain membrane preparations retain the majority of the radioactivity even after several buffer washes. With 3H-spiperone as ligand, dissociation constants were significantly elevated and maximum binding unchanged in rat striatal membranes after acute intraperitoneal injection of chlorpromazine (14 mg/kg). It is suggested that in studies of post-mortem brains of schizophrenics that contain neuroleptics specific 3H-spiperone binding will be lowered by competition from residual drug in membrane preparations and valid comparisons of 3H-spiperone binding to preparations from control and schizophrenic brains can only be made if maximum binding values are determined.  相似文献   

8.
Higher concentrations of spiperone were required to compete against the binding of 3H-spiperone to calf caudate when higher concentrations of 3H-spiperone were used. The Cheng-Prusoff equation did not adequately apply to this hydrophobic ligand, since the Ki values varied directly with the 3H-spiperone concentration. The equation was only adequate and gave a constant Ki when the total concentrations of 3H-spiperone were replaced by the measured free concentrations. It is suggested that IC50 values are best reported as such, unless the free concentrations are actually determined directly.  相似文献   

9.
Rats were treated with haloperidol (1.5mg/kg/day) in their drinking water for 9 months, with or without a subsequent withdrawal period of 7–10 days. Compared with controls, spontaneous locomotion and apomorphine-induced stereotypy were reduced in rats maintained on haloperidol whereas both behaviours were increased after the withdrawal period. Maximum specific 3H-spiperone binding to striatal membrane preparations was increased (about 65%) in drug-treated rats with or without a withdrawal period. The dissociation constant for 3H-spiperone binding was significantly increased only in those rats maintained on haloperidol with no withdrawal period. The increase in maximum binding of 3H-spiperone was larger than that reported after less prolonged administration of neuroleptics. The size of the change should be taken into account in assessing the increased ligand binding reported in post-mortem brains of schizophrenics.  相似文献   

10.
Chronic administration of haloperidol induced supersensitivity of the pre- and postsynaptic dopaminergic receptors in rat brain. The response of the presynaptic receptors was determined by an enhanced inhibitory effect of apomorphine on dopamine synthesis after gamma-butyrolactone injection. This change in the receptor function was detected both in the nigrostriatal and mesolimbic pathways. Haloperidol also increased the 3H-spiperone binding sites in striatal membranes, indicating supersensitivity of the postsynaptic receptors. Subsequent prolonged treatment with high doses of L-DOPA/carbidopa resulted in a decrease in 3H-spiperone binding sites, but had no effect on the supersensitive presynaptic receptors. It is suggested that tardive dyskinesia may be a state of both pre- and postsynaptic dopamine receptor supersensitivity and that chronic L-DOPA treatment may have a differential effect on these sites.  相似文献   

11.
To test the hypothesis that nM concentrations of 3H-dopamine, 3H-apomorphine and 3H-clonidine prefer pre-synaptic sites, while 3H-neuroleptics and 3H-dihydroergocryptine prefer post-synaptic sites, we tested catecholaminergic agonists and antagonists on the binding of these radio-ligands to calf caudate tissue. 1) Dopamine agonists (apomorphine, NPA and bromocryptine) inhibited 3H-spiperone binding, but not 3H-dopamine binding, in direct correlation to their clinical potencies. 2) Dopamine agonists inhibited 3H-apomorphine binding at concentrations identical to those causing pre-synaptic cardio-inhibition. 3) The IC50 values for 3H-dihydroergocryptine binding of alpha-adrenoceptor drugs did not correlate with the pre-synaptic IC50 values for affecting noradrenaline release; those for 3H-clonidine did. The 3 findings are compatible with the working hypothesis.  相似文献   

12.
S J List  P Seeman 《Life sciences》1979,24(16):1447-1452
Chronic administration of large doses of haloperidol (10 mg/kg/day for 21 days) resulted in a 37–45% increase in the specific binding of 3H-spiperone and a 28% increase in the specific binding of 3H-apomorphine in rat striatal homogenates. The increase in 3H-spiperone binding in neuroleptic-pretreated rats could be reversed significantly by a five day administration of either bromocryptine (35 mg/kg p.o.) or L-DOPA (200 mg/kg p.o.)+ Carbidopa (20 mg/kg p.o.). Treatment of normal rats for 5 days with either L-DOPA or bromocryptine alone had no effect on 3H-spiperone binding.These results indicate that dopamine agonists can reverse the neuroleptic-induced elevation of brain neuroleptic binding, suggesting that short-term high-dose therapy with dopamine agonists might be of some value in alleviating neuroleptic-induced tardive dyskinesia clinically.  相似文献   

13.
Abstract

The distribution of [3H]kainic acid binding sites was studied in the primate brain using semiquantitative autoradiography. The highest levels of binding were observed in the hippocampal area CA3 and the dentate gyrus. The deep layers of pyriform, cingulate and insular cortex, the central nucleus of the amygdala and the caudate nucleus also displayed high levels of [3H]kainic acid binding. Although these areas receive putative excitatory amino acid-containing afferents, other regions containing a similar input displayed low levels of binding. Some similarities were apparent between the distribution of binding sites and pathological changes in human neurodegenerative disorders such as temporal lobe epilepsy.  相似文献   

14.
The effects of ascorbic acid on dopaminergic 3H-agonist receptor binding were studied in membrane homogenates of bovine anterior pituitary and caudate, and rat striatum. In all tissues virtually no stereospecific binding (defined using luM (+)butaclamol) of the 3H-agonists N-propylnorapomorphine (NPA), apomorphine, or dopamine could be demonstrated in the absence of ascorbic acid. Although levels of total 3H-agonist binding were three to five times greater in the absence than in the presence of 0.1% ascorbic acid, the increased binding was entirely non-stereospecific. Greater amounts of dopamine-inhibitable 3H-NPA binding could be demonstrated in the absence of 0.1% ascorbic acid, but this measure of “specific binding” was demonstrated not to represent dopamine receptor binding since several other catecholamines and catechol were equipotent with dopamine and more potent than the dopamine agonist (±)amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) in inhibiting this binding. High levels of dopamine-displaceable 3H-agonist binding were detected in fresh and boiled homogenates of cerebellum, an area of brain which receives no dopaminergic innervation, further demonstrating the non-specific nature of 3H-agonist binding in the absence of ascorbic acid. These studies emphasize that under typical assay conditions ascorbic acid is required in order to demonstrate reversible and specific 3H-agonist binding to dopamine receptors.  相似文献   

15.
Masakazu Suga 《Life sciences》1980,27(10):877-882
L-Dihydroxyphenylalanine (L-Dopa) (200 mg/kg/day) was administered for 30 days to the rats whose nigrostriatal dopamine pathway was lesioned unilaterally with 6-hydroxydopamine and the receptor binding of 3H-spiperone and 3H-quinuclidinyl benzilate (3HQNB) was measured in the dopaminergic and muscarinic cholinergic receptors of the striatum. 3H-spiperone binding increased by 73% and 3HQNB binding decreased by 14% in the lesioned side when compared to the control side of L-Dopa-non-treated rats. 3H-spiperone binding was measured in the lesioned sides of L-Dopa-treated and L-Dopa-non-treated rats and was found to have decreased by 21% in the former. In the control side of the L-Dopa-treated lesioned rats, however, 3H-spiperone binding increased by 27% when compared to the opposite striatum of the same rats. 3HQNB binding in the lesioned side of L-Dopa-treated rats was not significantly different from that of the control side statistically. These results suggest that changes in functional equilibrium between the dopaminergic and cholinergic mechanisms influence the muscarinic cholinergic receptors and that supersensitivity of dopamine receptors after lesion of the nigrostriatal pathway also remains after long-term L-Dopa treatment.  相似文献   

16.
Drug competition profiles, effect of raphé lesion, and sodium dependency of the binding of two antidepressant drugs 3H-imipramine and 3H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common “antidepressant receptor.” Of the neurotransmitters tested, only serotonin displaced binding of both 3H-imipramine and 3H-mianserin. 3H-mianserin binding was potently displaced by serotonin S2 antagonists and exhibited a profile similar to that of 3H-spiperone binding. In the presence of the serotonin S2 antagonist spiperone, antihistamines (H1) potently displaced 3H-mianserin binding. 3H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing 3H-imipramine binding was not similar to their order in displacing 3H-spiperone or 3H-serotonin binding. Prior midbrain raphé lesions greatly decreased the binding of 3H-imipramine but did not alter binding of 3H-mianserin. Binding of 3H-imipramine but not 3H-mianserin was sodium dependent. These results show that 3H-imipramine and 3H-mianserin bind to different receptors. 3H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. 3H-Mianserin binds to postsynaptic receptors, possibly both serotonin S2 and histamine H1 receptors, the binding of which is sodium independent.  相似文献   

17.
The potency of seven substituted benzamine drugs (AHR-5531B, AHR-5645B, AHR-6092, AHR-8764, bromopride, sultopride and tiapride) to stimulate rat prolactin (PRL) secretion in vivo was found to be three orders of magnitude greater than that of non-benzamide neuroleptic drugs relative to their respective abilities to inhibit 3H-spiperone binding to bovine anterior pituitary membranes. Nevertheless, the IC50 values for the inhibition of 3H-spiperone binding by the seven substituted benzamide drugs was significantly correlated with their high potency to stimulate rat PRL secretion in vivo. Further, the slope of the regression line for these substituted benzamides paralleled that of a series of butyrophenone, phenothiazine, morphanthridine and dibenzodiazepine neuroleptic drugs. Two benzamide (sulpiride and metoclopramide) and three non-benzamide neuroleptic drugs gave intermediate results. This data suggests that blockade of different subgroups of dopamine receptors in the anterior pituitary gland labeled by 3H-spiperone may be responsible for the in vivo stimulation of PRL secretion by the benzamide and non-benzamide neuroleptioc drugs.  相似文献   

18.
In vivo binding of 3H-spiperone is saturable in the striatum, the limbic system and the frontal cortex but not in the cerebellum. A specific binding is different in all the brain regions thus the amount of labelling in the cerebellum may not be considered as a blank value.3H-spiperone binding revealed a specific subcellular distribution only when a very low dose was injected into rats.Ex vivo experiments allow the assessment of biochemical profiles of neuroleptic drugs according to their relative affinity for dopamine or serotonin receptors.  相似文献   

19.
Abstract

The specific binding of L-[3H] -glutamic acid (GLU) was investigated in synaptic membranes from rat substantia nigra. L-[3H]-GLU binding to the membrane preparations occurred in a reversible and saturable way. The specific binding was stimulated by the presence of CaCl2 and was reduced by freezing and thawing the membranes. Scatchard analysis of the saturation isotherms yielded a non-linear plot suggesting that the binding reaction does not occur through a simpla bimolecular association. Assuming non-interacting binding sites, a high (KD1, 139 nM; Bmax1, 3.5 pmoles/mg protein) and a low (KD2, 667 nM; Bmax2, 15.1 pmoles/mg protein) affinity L-[3H]-GLU binding site were obtained. The kinetics of dissociation of bound L-[3H]-GLU was biphasic; the respective dissociation rate constant (k-1) being 0.20 min?1 and 0.013 min?1. A series of amino acid receptor agonists and antagonists were tested as inhibitors of L-[3H]-GLU specific binding. Quisqualic acid, L-GLU and D-α-aminoadipate (D-α-AA) were the most potent inhibitors. DL-2-amino-4-phosphonobutyrate (APB), N-Methy1-D-aspartate (NMDA) and D-GLU were moderate inhibitors, whereas diamino-pimelic acid (DAPA) and glutamate diethyl ester (GDEE) exhibited the lowest relative potency. Kainic acid (KA), γ-aminobutyric acid (GABA) and bicuculline were not able to modify at any concentration used the specific binding of L-[3H]-GLU. These data demonstrate the presence of specific GLU binding sites in synaptic structures at substantia nigra level and support the idea that excitatory amino acids may play a role in synaptic transmission in this brain region.  相似文献   

20.
A novel benzazepine, SCH 23390, has recently been described as a very potent and selective dopamine D-1 receptor antagonist based on its potent inhibition of dopamine sensitive adenylate cyclase and its selective displacement of 3H-piflutixol from rat striatal receptor sites. In the present study, the in vitro binding of 3H-SCH 23390 to specific striatal receptor sites has been characterized. Binding was saturable and stereospecific, and the results of both saturation and competition studies are consistent with the binding of 3H-SCH 23390 to a single striatal site. A KD of 0.53 nM was obtained through Scatchard analysis. Relative potencies of a variety of neuroleptics in competing with 3H-SCH 23390 nd also 3H-spiperone support an interpretation that the single site to which 3H-SCH 23390 binds is the D-1 dopamine receptor. Also, the binding capacity of 3H-SCH 23390 (69 pmoles/gm wet weight) is in agreement with published values for the binding capacities of 3H-piflutixol and 3H-flupentixol. These data, coupled with the low level of non-specific binding encountered with this radioligand (4–8% of total binding at normally employed ligand concentration of 0.3 nM), its high specific activity and its negligible binding to plastic and glass surfaces make it ideally suited for studying interactions with this receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号