首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bovine striatal dopamine D1 receptor was solubilized with a combination of sodium cholate and NaCl in the presence of phospholipids, following treatment of membranes with a dopaminergic agonist (SKF-82526-J) or antagonist (SCH-23390). The solubilized receptors were subsequently reconstituted into lipid vesicles by gel-filtration. A comparison of ligand-binding properties shows that the solubilized and reconstituted receptors bound [3H]SCH-23390 to a homogeneous site in a saturable, stereospecific and reversible manner with a Kd of 0.95 and 1.1 nM and a Bmax of 918 and 885 fmol/mg protein respectively for agonist- and antagonist-pretreated preparations. These values are very similar to those obtained for membrane-bound receptors. The competition of antagonists for [3H]SCH-23390 binding exhibited a clear D1 dopaminergic order in the reconstituted preparation obtained from either agonist or antagonist-pretreated membranes, except that (+)butaclamol was about four-fold more potent thancis-flupentixol in displacing [3H]SCH-23390 binding in preparation obtained from agonist-pretreated membranes compared to antagonist-pretreated membranes. The agonist/[3H]SCH-23390 competition studies revealed the presence of a highaffinity component of agonist binding in both the reconstituted receptor preparations. The number of high-affinity agonist binding sites, however, is 40–80% higher in reconstituted preparation obtained from antagonist-treated membrane compared to that obrained from the agonist-treated membrane. In both the preparations, 100 M guanylylimidodiphosphate (Gpp(NH)p) completely abolished the high-affinity component of agonist binding compared to partial abolition in the native membranes, indicating a close association of a G-protein with the solubilized receptors. Whether the receptor was solubilized following agonist or antagonist preincubation of the membranes, the receptor-detergent complex eluted from a steric-exclusion HPLC column with an apparent molecular size of 360,000. Preincubation of the solubilized preparations with Gpp(NH)p had virtually no effect on the elution profile suggesting a lack of guanine nucleotide-dependent dissociation of G-protein receptor complex.  相似文献   

2.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity.  相似文献   

3.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   

4.
To investigate aspects of the biochemical nature of membrane-bound dopamine D1 receptors, rat striatal homogenates were pretreated with heavy metal cations and some other chemical agents, and their effects on D1 receptors were subsequently determined using a standard [3H](R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1-N-3- benzazepine([3H]SCH 23390) binding assay. Incubation of striatal membranes with as little as 1 microM Hg2+, 10 microM Cu2+, and 10 microM Cd2+ completely prevented specific [3H]SCH 23390 binding. The effect of Cu2+, 1.5 microM, was noncompetitive in nature, whereas 3-5 microM Cu2+ afforded mixed-type inhibition. The inhibitory effect of Cu2+ was fully reversed by dithiothreitol (0.1-1 mM). Cu2+ (2 microM) did not affect the affinity of cis-flupenthixol or clozapine for remaining [3H]SCH 23390 sites. A second series of cations, Co2+ (30 microM), Ni2+ (30 microM), Mn2+ (1 mM), Ca2+ (25 mM), and Ba2+ (20 mM), inhibited specific [3H]SCH 23390 binding by 50% at the concentrations indicated. The thiol alkylating reagent N-ethylmaleimide (NEM) (0.2 mM) reduced specific binding by 70%. The effect of NEM was completely prevented by coincubation with a D1 receptor saturating concentration of SCH 23390 (20 nM) or dopamine (10 microM). The results indicated that the dopamine D1 receptor is a thiol protein and that a thiol group is essential for the ligand binding.  相似文献   

5.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

6.
I. Binding of [3H]apomorphine to dopaminergic receptors in rat striatum was most reproducible and clearly detectable when incubations were run at 25°C in Tris-HCl buffer, pH 7.5, containing 1 mM-EDTA and 0.01% ascorbic acid, using a washed total-membrane fraction. The receptor binding was stereospecifically inhibited by (+)-butaclamol, and dopamine agonists and antagonists showed high binding affinity for these sites. Unlabelled apomorphine inhibited an additional nonstereospecific binding site, which was unrelated to dopamine receptors. EDTA in the incubation mixture considerably lowered nonstereospecific [3H]apomorphine binding, apparently by preventing the complexation of the catechol moiety with metal ions which were demonstrated in membrane preparations. Stereospecific [3H]apomorphine binding was not detectable in the frontal cortex, whereas in the absence of EDTA much saturable nonstereospecific binding occurred. II. Kinetic patterns of stereospecific [3H]spiperone and [3H] apomorphine binding to rat striatal membranes and the inhibition patterns of a dopamine antagonist and an agonist were evaluated at different temperatures in high-ionic-strength Tris buffer with salts added and low-ionic-strength Tris buffer with EDTA. Apparent KD, values of spiperone decreased with decreasing tissue concentrations. KD, values of both spiperone and apomorphine were little influenced by temperature changes. Scatchard plots of the stereospecific binding changed from linear to curved; the amount of nonstereospecific binding of the 3H ligands varied considerably, but in opposite directions for spiperone and apomorphine in the different buffers. In various assay conditions, interactions between agonists, and between antagonists, appeared fully competitive, but agonist-antagonist interactions were of mixed type. The anomalous binding patterns are interpreted in terms of surface phenomena occurring upon reactions of a ligand with complex physicochemical properties and nonsolubilized sites on membranes suspended in a buffered aqueous solution. It is concluded that anomalous binding patterns are not necessarily an indication of binding to multiple sites or involvement of distinct receptors for high-affinity agonist and antagonist binding.  相似文献   

7.
Abstract: It has been shown previously that typical neuroleptics have higher affinities for 3,4-dihydroxyphenyl-ethylamine (dopamine) Dl receptors as labeled by(R)- (+)- 8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1 -N-3-benzazepine-7-ol ([3H]SCH 23390) than for inhibiting dopamine-stimulated adenylate cyclase. We now report that the atypical neuroleptics, clozapine and fluperlapine, exhibit characteristics opposite to typical neuroleptics, i.e., they have higher affinity for inhibiting dopamine-stimulated adenylate cyclase than [3H]SCH 23390 binding. A variety of compounds, i.e., clozapine, fluperlapine, and dopamine, were tested for their capacity to affect the rate constants of [3H]SCH 23390 binding; these experiments revealed no effect of any tested compound on on-rate or off-rate of [3H]SCH 23390 binding. Treatment of striatal membranes with phospholipase A2 (PLA2) caused a rapid decrease in the Bmax value of the [3H]SCH 23390 binding with no effect on the Kd value. The adenylate cyclase, both the unstimulated, the dopamine-, fluoride-, and forskolin-stimulated activity, was far less sensitive than [3H]SCH 23390 binding to PLA2. Treatment of striatal membranes with filipine and (NH4SO4 produced, as did PLA2 treatment, a rapid decline in [3H]SCH 23390 binding. However, opposite to PLA2 treatment, these agents stimulated the adenylate cyclase. In conclusion, a comparison of the pharmacological characteristics of [3H]SCH 23390 binding and dopamine-stimulated adenylate cyclase suggests the existence of two different Dl binding sites. The rate experiments exclude the possibility of allosterically coupled sites. Instead our results favor that the Dl receptor exists in different states/conformations, i.e., both adenylate cyclase-coupled and uncoupled, and further, that the atypical neuroleptics clozapine and fluperlapine may have adenylate cyclase-coupled dopamine Dl receptors as target.  相似文献   

8.
A novel benzazepine, SCH 23390, has recently been described as a very potent and selective dopamine D-1 receptor antagonist based on its potent inhibition of dopamine sensitive adenylate cyclase and its selective displacement of 3H-piflutixol from rat striatal receptor sites. In the present study, the in vitro binding of 3H-SCH 23390 to specific striatal receptor sites has been characterized. Binding was saturable and stereospecific, and the results of both saturation and competition studies are consistent with the binding of 3H-SCH 23390 to a single striatal site. A KD of 0.53 nM was obtained through Scatchard analysis. Relative potencies of a variety of neuroleptics in competing with 3H-SCH 23390 nd also 3H-spiperone support an interpretation that the single site to which 3H-SCH 23390 binds is the D-1 dopamine receptor. Also, the binding capacity of 3H-SCH 23390 (69 pmoles/gm wet weight) is in agreement with published values for the binding capacities of 3H-piflutixol and 3H-flupentixol. These data, coupled with the low level of non-specific binding encountered with this radioligand (4–8% of total binding at normally employed ligand concentration of 0.3 nM), its high specific activity and its negligible binding to plastic and glass surfaces make it ideally suited for studying interactions with this receptor.  相似文献   

9.
Abstract

We studied the binding of [3H]-spiperone on human term placental membranes. This binding reached plateau level after 30 min incubation at 37°C and was reversed (t1/2 ~ 5 min) by addition of an excess of unlabeled spiperone. Scatchard analysis of saturation experiments with increasing doses of [3H]-spiperone (0–25 nM) showed one class of high affinity binding sites with a dissociation constant (Kd) of 14 ± 2 nM and a maximal binding capacity (Bmax) of 222 ± 9 fmoles/mg protein. The affinity of 5 competitors was determined in competitive binding assays. The D2-dopamine antagonists were the most potent inhibitors: Ki for spiperone and haloperidol were 8 ± 2 and 56 ± 22 nM respectively. Dopamine inhibited [3H]-spiperone binding with a Ki of 570 ± 50 μM whereas Schering 23390 (D1 antagonist) and propranolol (β-adrenergic antagonist) were without effect. The binding was also inhibited by 100 μM GTPγS (38 ± 8% inhibition), indicating that the dopamine receptor is coupled with a GTP binding protein. These results demonstrate for the first time the presence of D2-dopamine receptors in human placenta.  相似文献   

10.
The characteristics of [3H]ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. [3H]Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific [3H]ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for [3H]ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal [3H]ouabain binding was examined. Kainic acid lesions of the striatum reduced [3H]ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the "high-affinity" [3H]ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of [3H]ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.  相似文献   

11.
The effects of sodium, lithium, and magnesium on the in vitro binding properties of the D1 antagonist [3H]SCH23390 were examined with membrane preparations from rat neostriatum (CPU; caudate-putamen) and cerebral cortex (CTX). The saturation binding isotherms for both tissues performed in the presence of 120 mM of either Na+ or Li+ revealed an increase in the affinity, as compared to that observed when the incubation buffer was composed of Tris-Cl 50 mM with MgCl2 1 mM alone. For the CPU there were no changes in the maximum binding capacity (B max) in the different buffers used. In the case of the CTX, there was a loss of [3H]SCH23390 binding sites when either Na+ or Li+ 120 mM were added to the incubations, suggesting a lack of selectivity of this ligand in the absence of group IA cations. The agonist state of the [3H]SCH23390 binding site was studied in competition experiments with dopamine. The highest agonist affinity was obtained in 50 mM Tris-Cl buffer with 1 mM MgCl2 while the addition of 120 mM of either Na+ or Li+ caused a 3- to 5-fold decrease in the potency of dopamine to compete with specific [3H]SCH23390 binding in both CPU and CTX. The presence of magnesium was essential for the competition experiments; i.e.: a concentration of 1 mM MgCl2 was optimum to obtain dopamine antagonism of ligand binding, while increasing Mg2+ to 2 or 5 mM did not appear to further improve the inhibitions. The results support both agonist and antagonist affinity shifts for the dopamine D1 receptor labeled with [3H]SCH23390. Receptor affinity studies should take into account that pharmacological specificity may vary with the incubation buffer utilized, especially when comparing binding data from different laboratories performed under varying ionic conditions.  相似文献   

12.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

13.
The effect of intrastriatal microinjection of kainic acid (KA) on specific binding of [3H]muscimol to the particulate fractions obtained from corpus striatum (CS), globus pallidus (GP), substantia nigra (SN), and cerebral cortex (CC) was examined. Seven days after the unilateral intrastriatal microinjection of KA, the amount of specifically bound [3H]muscimol was significantly increased at the injected site, whereas no significant alteration of [3H]muscimol binding was found in GP, SN, or CC. Scatchard analysis of striatal binding revealed that microinjection of KA significantly increased the affinity (KD) of GABA receptors on the injected (lesioned) side of the CS without affecting the total number of binding sites (Bmax) therein. This significant increase in [3H]muscimol binding, however, was eliminated by pretreating particulate fractions from the CS with Triton X-100, a non-ionic detergent. No statistically significant difference in amounts of [3H]muscimol binding was detected when the preparations from the KA-treated and non-treated CS were preincubated with 0.05% Triton X-100, respectively. Scatchard analysis using CS preparations treated with 0.05% Triton X-100 revealed that the affinity of the GABA receptor was increased by treatment with Triton X-100, while the total number of binding sites (Bmax) was unchanged by this treatment. These results suggest that neuronal degeneration produced by KA in vivo and pretreatment of particulate preparations with Triton X-100 in vitro may increase the amount of specifically bound [3H]muscimol to CS preparations by a similar molecular mechanism.  相似文献   

14.
The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 M) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.  相似文献   

15.
Abstract: With [3H]guanosine triphosphate ([3H]GTP) and [3H]β, γ -imidoguanosine 5′-triphosphate ([3H]GppNHp) as the labelled substrates, both the binding and the catabolism of guanine nucleotides have been studied in various brain membrane preparations. Both labelled nucleotides bound to a single class of noninteracting sites (KD= 0.1-0.5 μm ) in membranes from various brain regions (hippocampus, striatum, cerebral cortex). Unlabelled GTP, GppNHp, and guanosine diphosphate (GDP) but not guanosine monophosphate (GMP) and guanosine competitively inhibited the specific binding of [3H]guanine nucleotides. Calcium (0.1–5 mm ) partially prevented the binding of [3H]GTP and [3H]GppNHp to hippocampal and striatal membranes. This resulted from both an increased catabolism of [3H]GTP (into [3H]guanosine) and the likely formation of Ca-guanine nucleotide2- complexes. The blockade of guanine nucleotide catabolism was responsible for the enhanced binding of [3H]GTP to hippocampal membranes in the presence of 0.1 mm -ATP or 0.1 mm -GMP. Striatal lesions with kainic acid produced both a 50% reduction of the number of specific guanine nucleotide binding sites and an acceleration of [3H]GTP and [3H]GppNHp catabolism (into [3H]guanosine) in membranes from the lesioned striatum. This suggests that guanine nucleotide binding sites were associated (at least in part) with intrinsic neurones whereas the catabolising enzyme(s) would be (mainly) located to glial cells (which proliferate after kainic acid lesion). The characteristics of the [3H]guanine nucleotide binding sites strongly suggest that they may correspond to the GTP subunits regulating neurotransmitter receptors including those labelled with [3H]5-hydroxytryptamine ([3H]5-HT) in the rat brain.  相似文献   

16.
In order to investigate the possibility that there may be two conformationally distinct dopamine D1 binding sites, the effect of lysine-modifying agents on striatal dopamine D1 receptors was investigated. Treatment with the distilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, (DIDS), resulted in an irreversible D1 receptor inactivation that was associated with a 70% loss of binding sites. The remaining DIDS-insensitive sites displayed both a decreased affinity (approximately 5 fold) for the D1 antagonist SCH-23390 and an enhanced affinity of dopaminergic agonists (approximately 10 fold) for the agonist high-affinity form of the receptor. Pretreatment with Gpp(NH)p, a non-hydrolysable guanine nucleotide, prevented the formation of the agonist high-affinity form, indicating that these sites are G-protein-linked. Prior occupancy of D1 receptors with dopaminergic agonists and antagonists afforded no protection against DIDS inactivation, suggesting that a site outside the ligand binding subunit of the D1 receptor was modified. Taken together, these data suggest that [3H]SCH-23390 labels two conformationally distinct populations of dopamine D1 receptors.  相似文献   

17.
In frozen-thawed repeatedly washed rat cortical synaptic membranes, Ca2+ (1-5 mM) decreased the binding of [3H]muscimol whereas it increased the binding of [3H]gamma-aminobutyric acid (GABA). However, the binding of [3H]GABA was decreased by the same extent as the binding of [3H]muscimol when the membranes were incubated with baclofen (a selective ligand for the GABAB binding site) and Ca2+. Scatchard analysis of [3H]muscimol binding revealed that Ca2+ reduced the density of GABA binding sites without affecting the dissociation constant. Ca2+ was more potent than Ba2+, Mg2+ was ineffective, and the Ca2+ antagonist La3+ stimulated [3H]muscimol binding. The inhibition of [3H]muscimol binding by Ca2+ was not influenced by calmodulin (50 micrograms/ml), trifluoperazine (10(-5) M), verapamil (10(-6) M), quinacrine (10(-4) M), cordycepin (0.1 mM), leupeptin (20 microM), or soybean trypsin inhibitor (0.1 mg/ml). Moreover, the effect of Ca2+ was additive to that of GABA-modulin. These results indicate that Ca2+ decreases the number of GABAA binding sites while unveiling GABAB binding sites.  相似文献   

18.
Certain neuroleptic drugs, such as spiperone and (+) butaclamol, can discriminate between two populations of [3H]5-hydroxytryptamine ([3H]5-HT) binding sites in rat brain. The butyrophenone neuroleptic spiperone shows the greatest selectivity for these two binding sites, having at least a 3000-fold difference between its dissociation constants (2-12 nM versus 35,000 nM) for the high- and low-affinity sites, respectively. Inhibition of [3H]5-HT binding by spiperone in rat frontal cortex and corpus striatum yields distinctly biphasic inhibition curves with Hill slopes significantly less than unity. Results from nonlinear regression analysis of these inhibition studies were consistent with a two-site model in each brain region. In the frontal cortex the high-affinity neuroleptic sites comprised about 60% of the total [3/H]5-HT binding sites whereas in the corpus striatum they accounted for only 20% of the sites. Furthermore, saturation studies of [3H]5-HT binding assayed in the absence or presence of 1 μM-spiperone (a concentration that completely blocks the high-affinity site while having minimal activity at the low-affinity site) reveal a parallel shift in the Scatchard plot with no change in the dissociation constant of [3H]5-HT, but a significant decrease (64% in frontal cortex or 28% in corpus striatum) in the number of specific binding sites. These observations are consistent with the existence of at least two populations of [3H]5-HT binding sites having a differential regional distribution in rat brain.  相似文献   

19.
E A Debler  A Hashim  A Lajtha  H Sershen 《Life sciences》1988,42(25):2553-2559
The inhibition of uptake of [3H] dopamine and [3H] 1-methyl-4-phenylpyridine (MPP+) was examined in mouse striatal synaptosomal preparations. Kinetic analysis indicated that ascorbic acid is a noncompetitive inhibitor of [3H] MPP+ uptake. No inhibition of [3H] dopamine uptake is observed. The dopamine uptake blockers, GBR-12909, cocaine, and mazindol strongly inhibit (IC50 less than 1 uM) both [3H] dopamine and [3H] MPP+ transport. Nicotine, its metabolites, and other tobacco alkaloids are weak inhibitors (IC50 greater than 1 mM) except 4-phenylpyridine and lobeline, which are moderate inhibitors (IC50 = 3 to 40 uM) of both [3H] dopamine and [3H] MPP+ uptake. These similarities in potencies are in agreement with the suggestion that [3H] MPP+ and [3H] dopamine are transported by the same carrier. The differences observed in the alteration of dopaminergic transport and mazindol binding by ascorbic acid suggest that ascorbic acid's effects on [3H] MPP+ transport are related to translocation and/or dissociation processes occurring subsequent to the initial binding event.  相似文献   

20.
[3H]Fluphenazine was used to label both D-1 and D-2 dopamine receptors in mouse striatal membranes. The D-1 and D-2 specific binding of [3H]fluphenazine was discriminated by the dopamine antagonists SCH-23390 (D-1 selective) and spiperone (D-2 selective). Saturation analyses of these two sites yielded a D-1 receptor density in mouse striatum of 1,400 fmol/mg of protein and a D-2 receptor density of 700 fmol/mg of protein. The affinity of [3H]fluphenazine for the D-2 site was slightly greater than for the D-1 site; the equilibrium dissociation constant (KD) was 0.7 versus 3.2 nM, respectively. Assay conditions are described that reduce nonspecific binding of [3H]fluphenazine to acceptable levels (35% of total binding at 1 nM [3H]fluphenazine). By comparison of displacement curves from a series of dopaminergic and nondopaminergic ligands, the pharmacological specificity of [3H]fluphenazine binding in mouse striatum was demonstrated to be dopaminergic. Only small amounts of dopamine-specific (apomorphine-sensitive) [3H]fluphenazine binding were found in other brain regions. However, chlorpromazine displaced considerable [3H]fluphenazine from all brain regions, including cerebellum, suggesting the presence of a [3H]fluphenazine binding site with a phenothiazine specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号