首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
性激素对血红素氧化酶在大鼠前列腺腹侧叶表达的影响   总被引:1,自引:0,他引:1  
Tian J  Zheng Y  Yang C 《生理学报》2004,56(1):54-59
血红素氧化酶(heme oxygenase,HO)是产生内源性一氧化碳(carbon monoxide,CO)的限速酶,最近发现内源性CO在调节平滑肌张力方面起重要作用。而人的良性前列腺增生(benign prostates hyperplasia,BPH)所致的膀胱出口梗阻与前列腺平滑肌张力有密切关系,但还不清楚内源性HO/CO系统是否介导了前列腺平滑肌的活动。为了观察性激素对大鼠前列腺腹侧叶中血红素氧化酶-1(heme oxygenase-1,HO-1)和血红素氧化酶-2(heme oxygenase-2,HO-2)基因表达的影响,我们采用睾丸切除术建立雄性SD大鼠去势模型,用RT-PCR方法观察HO-1和HO-2的转录水平,应用免疫组织化学结合图像分析技术,观察去势、外源性雄激素和雌激素对前列腺腹侧叶中HO—1和HO-2蛋白水平的影响。结果表明,HO-1和HO-2在正常大鼠前列腺腹侧叶中都有表达,腺上皮细胞和纤维平滑肌间质呈现HO-1的免疫活性,HO-2的免疫染色仅在腺上皮细胞内检测到;去势组HO-1的mRNA和蛋白表达水平显著低于正常对照组(P<0.01):外源性给予雄激素组和雌激素组的HO-1表达水平明显增高(P<0.01),且雌激素主要增加前列腺纤维平滑肌间质的HO-1表达:HO-2在各组间的表达无明显差异(P>0.05)。这些结果提示,性激素对HO-1有诱导作用,但对HO-2无明显的影响,因此推测一氧化碳-血红素氧化酶(CO—HO)  相似文献   

2.
Heme oxygenase is the rate-limiting enzyme in heme catabolism, and is induced by oxidative stress, foreign and endogenous chemicals, and many trace elements and heavy metals. This study examined the effect of the oxidative state of the heavy metal tin, on heme oxygenase-1 induction in cardiac tissue. Subcutaneous administration of stannous and stannic chloride failed to induce the enzyme in this tissue. Atomic absorption spectroscopy revealed the absence of tin in the heart cells. Investigation of several metal formulations showed that both stannous and stannic citrate were able to enter the bloodstream from the injection site and into heart tissue. Northern blot analysis revealed that heme oxygenase-1 mRNA was elevated several-fold in rat hearts from animals which received either stannous or stannic citrate, and that mRNA levels corresponded with the increase in enzyme activity. The presence of citrate facilitated the transport of the tin ion into the blood stream and possibly across cardiac cell membrane. The stannous ion was more potent as an inducer of heme oxygenase than was the stannic ion.  相似文献   

3.
保护基因HO在组织细胞中的作用及其机制研究进展   总被引:2,自引:0,他引:2  
血红素加氧酶(HO)是血红素降解过程中的限速酶,将血红素降解为胆绿素、CO和游离铁。HO有三种同工酶,HO—1为诱导型,而HO—2和HO—3呈结构性表达。HO—1是一种分布广泛的应激蛋白,具有抗炎、抗凋亡、抗增生效应。各组织细胞中HO—1受不同的应激而诱导,通过上调HO—1基因表达来防御由细胞因子诱导的氧化应激和凋亡。HO—1的细胞保护机制目前尚未明确,可能涉及CO、NO等信号分子,抗凋亡基因的表达,以及NF—κB与p38MAPK信号转导途径的介导。本文就HO在组织细胞中的作用及其可能的机制进行综述。  相似文献   

4.
In this study, we examined the effect of biliverdin (BV), a product of heme oxygenase (HO) catalyzed reaction, on lateral root (LR) formation in rice. Treatment with BV induced LR formation and HO activity. As well, BV, could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) reduced LR number, HO activity and OsHO1 mRNA level induced by BV. Our data suggest that HO is required for BV-induced LR formation in rice.  相似文献   

5.
Objective: We have previously demonstrated that the inducible form of heme oxygenase plays a critical role in protecting against oxidative stress in mammals. To gain further insight into the functions of this enzyme in plants, we have tested its activity and expression in soybean nodules subjected to cadmium (Cd) stress.

Materials and methods: Four-weeks-old soybean nodulated plants were treated with different cadmium chloride concentrations (0, 50 and 200 μM) during 48 h. Oxidative stress parameters such as TBARS content, GSH levels and antioxidant enzyme activities were measured as well as heme oxygenase activity and expression. Besides, the effect of biliverdin and Zn-protophorphyrin IX were analized.

Results: Treatment with 200 μM Cd during 48 h caused a 67% increase in TBARS content, whereas GSH decreased 44%, and total superoxide dismutase, gluthatione reductase and guaiacol peroxidase were also inhibited 54, 20 and 60%, respectively. A total of 200 μM Cd produced the overexpression of heme oxygenase-1, as well as a 10-fold enhancement of its activity. Co-administration of biliverdin (10 μM) completely prevented the effects caused by Cd. Treatment with Zn protoporphyrin IX, a strong inhibitor of heme oxygenase, expectedly decreased heme oxygenase-1 activity to half. When the inhibitor was given together with Cd, completely prevented the enzyme induction and oxidative stress parameters were significantly enhanced.

Conclusion: Taking together, these results are indicating that heme oxygenase plays a protective role against oxidative cell damage in soybean nodules.  相似文献   

6.
目的:研究上调血红素氧合酶1(HO-1)的表达对糖尿病心肌梗死大鼠心功能的影响及其机制。方法:将60只成年Wistar雄性大鼠随机分为5组(n=12),分别为假手术组、糖尿病组、模型组、诱导剂组、抑制剂组。心梗造模后次日开始给药,1次/周,持续6周,术后28周,应用心脏超声、经颈动脉左心室内插管术等方法观察HO-1诱导剂钴原卟啉(CoPP)及HO活性抑制剂锡中卟啉(SnMP)干预后对心室重构及心功能各项指标的远期影响;测定血糖(GLU)、总胆红素(TB)、C反应蛋白(CRP)、血清肌酐(cr)、转氨酶(ALT)等指标;采用ELISA测定白介素-6(IL-6)、肿瘤坏死因子(TNE)、一氧化氮(NO)、前列环素(PG12)、脂联素、超敏CRP(HsCRP)等水平。结果:应用CoPP上调HO-1水平,能够改善糖尿病心梗大鼠左心室压力最大变化速率、左室射血分数、左室短轴缩短率,缩小左室舒张末期内径,升高血清胆红素、一氧化氮和前列环素水平,提高心肌组织磷酸化的内皮型一氧化氮合酶(peNOS)、磷酸化的活化蛋白激酶(pAkt)、磷酸化的腺苷活化的蛋白激酶(pAMPK)的表达,降低血清TNF-α、hs-CRP水平。使用SnMP后,能够阻断CoPP的上述作用。结论:上调HO-1通过peNOS、pAMPK途径能够长期地改善血管内皮功能,抑制炎症反应,提升血清胆红素等,有效抑制心室重塑,改善梗死后糖尿病大鼠远期的心功能。  相似文献   

7.
Chronic sulfur mustard skin lesions (CSMSLs) are the most common complications of sulfur mustard exposure; however, its mechanism is not completely understood.According to clinical signs, there are similarities between CSMSL and atopic dermatitis (AD). In this study, proteomic results of AD were reviewed and the AD-associated protein–protein interaction network (PIN) was analyzed. According to centrality measurements, 16 proteins were designated as pivotal elements in AD mechanisms. Interestingly, most of these proteins had been reported in some sulfur mustard-related studies in late and acute phases separately. Based on the gene enrichment analysis, aging, cell response to stress, cancer, Toll- and NOD-like receptor and apoptosis signaling pathways have the greatest impact on the disease. By the analysis of directed protein interaction networks, it is concluded that TNF, IL-6, AKT1, NOS3 and CDKN1A are the most important proteins. It is possible that these proteins play role in the shared complications of AD and CSMSL including xerosis and itching.  相似文献   

8.
Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 M HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NAC), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 M HD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.Abbreviations BSO L-buthionine (S,R)-sulfoximine - GSH glutathione - HD sulfur mustard - NAC N-acetyl-L-cysteine - PBL peripheral blood lymphocytes The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.  相似文献   

9.
The role of heme oxygenase signaling in various disorders   总被引:3,自引:0,他引:3  
Modern methods of cell and molecular biology, augmented by molecular technology, have great potential for helping to unravel the complex mechanisms of various diseases. They also have the potential to help us try to dissect the events which follow the altered physiological conditions. Thus, there is every reason to believe that some of the potential mechanisms will be translated sooner or later into the clinic. Heme oxygenase (HO)-related mechanisms play an important role in several aspects of different diseases. In the past several years, significant progress has been made in our understanding of the function and regulation of HO. The objective of this article is to review current knowledge relating to the importance of HO mechanism in various diseases including myocardial ischemia/reperfusion, hypertension, cardiomyopathy, organ transplantation, endotoxemia, lung diseases, and immunosuppression. The morbidity and mortality of these diseases remain high even with optimal medical management. Furthermore, in this review, we consider various factors influencing the HO system and finally assess current pharmacological approaches to their control.  相似文献   

10.
The photic regulation of heme oxygenase (HO) activity was examined in the golden hamster retina. This enzymatic activity was significantly higher at midday than at midnight. When the hamsters were placed under constant darkness for 48 h and killed at subjective day or at subjective night, the differences in HO activity disappeared. Western blot analysis showed no differences in HO levels among these time points. Dopamine significantly increased this activity in retinas excised at noon or at midnight, with a higher sensitivity at night. The effect of dopamine was reversed by SCH 23390 but not by spiperone and clozapine and it was not reproduced by quinpirole. In vitro, the increase in HO activity found in retinas incubated under light for 1 h was significantly reduced by SCH 23390. Two cAMP analogs increased HO activity and their effect, as well as the effect of dopamine was blocked by H-89, a protein kinase A (PKA) inhibitor. Tin protoporphyrin IX, an HO inhibitor, significantly decreased cGMP accumulation with maximal effects during the day. Low concentrations of bilirubin decreased retinal thiobarbituric acid substances levels (an index of lipid peroxidation) in basal conditions and after exposing retinal cells to H2O2. These results suggest that hamster retinal HO activity is regulated by the photic stimulus, probably through a dopamine/cAMP/PKA dependent pathway.  相似文献   

11.
Bis-2-chloroethyl sulfide (sulfur mustard, HD) is a bifunctional alkylating agent which causes severe vesication characterized by slow wound healing. Our previous studies have shown that the vesicant HD disrupts the epidermal-dermal junction at the lamina lucida of the basement membrane. The purpose of this study was to examine whether HD directly modifies basement membrane components (BMCs), and to evaluate the effect of HD on the cell adhesive activity of BMCs. EHS laminin was incubated with [14C]HD, and extracted by gel filtration. Analysis of the [14C]HD-conjugated laminin fraction by a reduced sodium dodecyl sulfate-polyacrylaminde gel electrophoresis (SDS-PAGE) revealed the incorporation of radioactivity into both laminin subunits and a laminin trimer resistant to dissociation in reduced SDS-PAGE sample buffer, suggesting direct alkylation and cross-linking of EHS laminin by [14C]HD. Normal human foreskin epidermal keratinocytes were biosynthetically labeled with [35S]cysteine.35S-labeled laminin isoforms, Ae. B1e. B2e. laminin and K.B1e.B2e. laminin (using the nomenclature of Engel), fibronectin, and heparan sulfate proteoglycan were isolated by immunoprecipitation from the cell culture medium, treated with HD or ethanol as control, and then analyzed by SDS-PAGE. On reduced SDS gels, these three BMCs not treated with HD showed the typical profile of dissociated subunits. However, HD treatment caused the appearance of higher molecular weight bands indicative of cross-linking of subunits within these BMCs. The HD scavengers sodium thiosulfate and cysteine prevented the cross-linking of BMC subunits by HD. Finally, Tissue culture dishes coated with laminin or fibronectin were treated with HD or ethanol as a control, and human keratinocytes were plated on the BMC-coated surfaces. After 20 h of incubation, it was observed that cell adhesion was decreased significantly on the BMC-coated surfaces treated with HD. As expected, the preincubation of HD with cysteine diminished the HD inhibition of cell adhesion. Thus, HD alkylates adhesive macromolecules of the basement membrane zone and inhibits their cell adhesive activity. These findings support the hypothesis that the alkylation of basement membrane components by HD destabilizes the epidermal-dermal junction in the process of HD-induced vesication. The failure of the HD-alkylated BMCs to support the attachment of keratinocytes might also contribute to the slow reepithelialization of the wound site which is characteristic of HD-induced blistering.Abbreviations BMC basement membrane component - DEM Dulbecco's modified Eagle's medium - ECM extracellular matrix - EHS Englebreth-Holm-Swarm sarcoma - HD sulfur mustard - HSPG heparan sulfate proteoglycan - KGM keratinocyte growth medium - NHEK normal human keratinocytes - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

12.
We developed a microassay for heme oxygenase, in which bilirubin (BR) production was measured by HPLC, and compared it to previously reported spectrophotometric methods. The microassay required as little as 5 mg wet human, rat, or chick embryo liver. Using the HPLC assay, values for heme oxygenase activity in extracts (10,000 g supernatant) of normal human liver obtained by needle biopsies were 44 +/- 7 (pmol BR.min-1.mg protein-1). Spectrophotometric assays of homogenates of human liver resulted in low values for heme oxygenase, due to unknown sources of interference. Comparative values of microsomal heme oxygenase activity were 294 +/- 25, 95 +/- 3, and 87 +/- 9 pmol BR.min-1.mg protein-1 for chick, rat, and human livers, respectively.  相似文献   

13.
Heme oxygenase (HO-1) is a stress protein that has been suggested to participate in defense mechanisms against agents that induce oxidative injury such as hemoglobin/heme, hypoxia-ischemia and cytokines. Overexpression of HO-1 in endothelial cells (EC) might, therefore, protect against oxidative stress produced under these pathological conditions, by generation of CO, a vasodilator, and bilirubin, which has antioxidant properties that enhance blood vessel formation to counteract hypoxia-induced injury. A plasmid containing the cytomegalovirus promoter (pCMV) neomycin human HO-1 gene complexed to cationic liposomes, lipofectin, was used to transfect rabbit coronary microvessel EC. Cells transfected with human HO-1 gene demonstrated a twofold increase in HO activity and maintained a similar phenotype as in the nontransfected cells. Cell number in transfected cells with human HO-1 gene increased by about 45%, as compared to nontransfected or those transfected with control pCMV. Transfected and nontransfected EC revealed a similar response to basic fibroblast growth factor (bFGF) in capillary formation. However, transfected cells with the human HO-1 gene exhibited a twofold increase in blood vessel formation. The angiogenic response of EC to overexpression of HO-1 gene provides direct evidence that the inductive form of HO-1 following injury represents an important tissue adaptive mechanism for moderating the severity of cell damage produced in inflammatory reaction sites of hemorrhage, thrombosis and hypoxic-ischemia. Thus, HO-1 may participate in the regulation of EC activation, proliferation and angiogenesis. J. Cell. Biochem. 68:121–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Heme oxygenase (HO) catalyzes physiological heme degradation using O(2) and reducing equivalents to produce biliverdin, iron, and CO. Notably, the HO reaction proceeds without product inhibition by CO, which is generated in the conversion reaction of alpha-hydroxyheme to verdoheme, although CO is known to be a potent inhibitor of HO and other heme proteins. In order to probe how endogenous CO is released from the reaction site, we collected X-ray diffraction data from a crystal of the CO-bound form of the ferrous heme-HO complex in the dark and under illumination by a red laser at approximately 35 K. The difference Fourier map indicates that the CO ligand is partially photodissociated from the heme and that the photolyzed CO is trapped in a hydrophobic cavity adjacent to the heme pocket. This hydrophobic cavity was occupied also by xenon, which is similar to CO in terms of size and properties. Taking account of the affinity of CO for the ferrous verdoheme-HO complex being much weaker than that for the ferrous heme complex, the CO derived from alpha-hydroxyheme would be trapped preferentially in the hydrophobic cavity but not coordinated to the iron of verdoheme. This structural device would ensure the smooth progression of the subsequent reaction, from verdoheme to biliverdin, which requires O(2) binding to verdoheme.  相似文献   

15.
Sulfur mustard (HD, mustard gas) is a vesicant chemical warfare agent for which there is no specific medical countermeasure. A potential approach to combating the debilitating effects of this agent is the use of compounds that can react with this material before it interacts with critical macro-molecules. Glutathione (GSH), a tripeptide that exists in high concentrations in cells, reacts with HD and is involved in HD detoxification. Pretreatment of human peripheral blood lymphocytes (PBL) with 10 mmol/L L-oxothiazolidine-4-carboxylate (OTC), a "masked" cysteine precursor, increased intracellular glutathione levels 25-50% over control values. Pretreated PBL were harvested, washed, and exposed to 10, 50, or 100 µmol/L HD. Flow cytometry was used to measure cytotoxicity by propidium iodide uptake. Pretreatment of PBL with OTC led to small decreases in cytotoxicity after HD exposure. However, treatment of cells with OTC after HD exposure was not beneficial. Compounds that can modulate GSH levels within the cell may help to reduce the cytotoxicity of HD when used as a pretreatment.  相似文献   

16.
Sulfur mustard (SM) is an old chemical warfare agent causing blisters (vesicant). Skin toxicity is thought to be partly caused by SM induced DNA damage. SM and the hemi mustard 2-chloroethyl ethyl sulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. Both chemicals react especially with N7 guanine. The most abundant adducts are 7-hydroxyethylthioethylguanine for SM (61%) and 7-ethyl thioethylguanine for CEES. Thus, DNA alkylation should serve as a biomarker of SM exposure. A specific monoclonal antibody (2F8) was previously developed to detect SM and CEES adducts at N7 position by means of immunoslotblot (ISB) technique (van der Schans et al. (2004) [16]). Nitrogen mustards (HN-1, HN-2, HN-3) are alkylating agents with structural similarities, which can form DNA adducts with N7 guanine. The aim of the presented work was to modify the van der Schans protocol for use in a field laboratory and to test the cross reactivity of the 2F8 antibody against nitrogen mustards. Briefly, human keratinocytes were exposed to SM and CEES (0–300 μM, 60 min) or HN-1, HN-2, HN-3 (120 min). After exposure, cells were scraped and DNA was isolated and normalized. 1 μg DNA was transferred to a nitrocellulose membrane using a slotblot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with chromogen staining (3,3′-diaminobenzidine (DAB), SeramunGrün). Blots were photographed and signal intensity was quantified. In general, DAB was superior to SeramunGrün stain. A staining was seen from 30 nM to 300 μM of SM or CEES, respectively. However, statistically significant DNA adducts were detected after CEES and SM exposure above 30 μM which is below the vesicant threshold. No signal was observed after HN-1, HN-2, HN-3 exposure. The total hands-on time to complete the assay was about 36 h. Further studies are necessary to validate SM or CEES exposure in blister roofs of exposed patients.  相似文献   

17.
Heme oxygenase-1 (HO-1) is an inducible enzyme that catalyzes oxidative degradation of heme to form biliverdin, carbon monoxide (CO), and free iron. Biliverdin is subsequently reduced to bilirubin by the enzyme biliverdin reductase. Increasing evidence has indicated the critical role of HO-1 in cytoprotection and more diverse biological functions. Induction of HO-1 by various chemical inducers that are primarily cell stress inducers or by HO-1 gene transfection confers a protective capacity to cultured cells as well as to cells in several in vivo animal models. In addition, HO-1-deficient mice exhibit a significant increase in susceptibility to tissue injury. The cytoprotective action of HO-1 seems to be mainly a function of the antiapoptotic effects of the enzyme. HO-1 is believed to exert this antiapoptotic action by multiple mechanisms: (a) decreased intracellular pro-oxidant levels, (b) increased bilirubin levels, and (c) elevated CO production. CO may produce an antiapoptotic effect by inhibiting both expression of p53 and release of mitochondrial cytochrome c. HO-1 may also be a target in antitumor therapy because the growth of most tumors depends on HO-1. Our preliminary studies with an HO inhibitor showed a promising antitumor effect. This preliminary work warrants continued investigation for possible novel anticancer chemotherapy.  相似文献   

18.
19.
Myocardial adaptation to ischemia involves up-regulated expression of a number of genes implicated in conferring cytoprotection. We have previously shown that myocardial ischemia followed by reperfusion leads to a co-ordinated expression of mRNAs encoding heme oxygenase-1 (HO-1) and ubiquitin in pigs. HO-1 participates in biological reaction leading to the formation of the antioxidant, bilirubin and the putative cellular messenger, carbon monoxide. In the present study, we examined the expression and cellular localization of HO-1 in the heart during myocardial stunning in anesthetized pigs. After thoracotomy, the LAD was occluded for 10 min and reperfused for 30 min (group I, n = 4), again occluded for 10 min and reperfused for 30 min (group II, n = 6), 90 min (group III, n = 4), 210 min (group IV, n = 5) and for 390 min (group V, n = 4). Myocardial tissue specimens were collected in 10% formalin as well as in liquid nitrogen and processed for immunohistochemistry and mRNA expression analysis, respectively. In the distribution territory of the LAD (experimental, E), systolic wall thickening was significantly decreased (39 ± 6%) as compared to that of the area perfused by left circumflex coronary artery (LCx, control) in group I and remained depressed in all subsequent groups. Northern blot analysis revealed that the expression of a single mRNA species of 1.8 kb encoding HO-1 was significantly induced in E as compared to control in groups II and III with maximum mRNA levels in group II (1.9 ± 0.4 fold vs. control). Immunoreactive HO-1 was localized in the cytoplasm of cardiomyocytes as well as in the perivascular regions in all groups. Semiquantitative analysis of HO-1 staining showed significantly enhanced levels of HO-1 in perivascular region in E as compared to respective controls derived from groups III and IV. These results suggest that myocardial adaptive response to ischemia involves up-regulation of HO-1 in cells of perivascular region indicating that this enzyme may participate in regulating vascular tone via CO and thereby, contributing in pathophysiologically important defense mechanism(s) in the heart.  相似文献   

20.
In most cases, macroautophagy/autophagy serves to alleviate cellular stress and acts in a pro-survival manner. However, the effects of autophagy are highly contextual, and autophagic cell death (ACD) is emerging as an alternative paradigm of (stress- and drug-induced) cell demise. AT 101 ([-]-gossypol), a natural compound from cotton seeds, induces ACD in glioma cells as confirmed here by CRISPR/Cas9 knockout of ATG5 that partially, but significantly rescued cell survival following AT 101 treatment. Global proteomic analysis of AT 101-treated U87MG and U343 glioma cells revealed a robust decrease in mitochondrial protein clusters, whereas HMOX1 (heme oxygenase 1) was strongly upregulated. AT 101 rapidly triggered mitochondrial membrane depolarization, engulfment of mitochondria within autophagosomes and a significant reduction of mitochondrial mass and proteins that did not depend on the presence of BAX and BAK1. Conversely, AT 101-induced reduction of mitochondrial mass could be reversed by inhibiting autophagy with wortmannin, bafilomycin A1 and chloroquine. Silencing of HMOX1 and the mitophagy receptors BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like) significantly attenuated AT 101-dependent mitophagy and cell death. Collectively, these data suggest that early mitochondrial dysfunction and HMOX1 overactivation synergize to trigger lethal mitophagy, which contributes to the cell killing effects of AT 101 in glioma cells.

Abbreviations: ACD, autophagic cell death; ACN, acetonitrile; AT 101, (-)-gossypol; BAF, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BH3, BCL2 homology region 3; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; BP, Biological Process; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CC, Cellular Component; Con, control; CQ, chloroquine; CRISPR, clustered regularly interspaced short palindromic repeats; DMEM, Dulbecco’s Modified Eagle Medium; DTT, 1,4-dithiothreitol; EM, electron microscopy; ER, endoplasmatic reticulum; FACS, fluorescence-activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GO, Gene Ontology; HAcO, acetic acid; HMOX1, heme oxygenase 1; DKO, double knockout; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LPL, lipoprotein lipase, MEFs, mouse embryonic fibroblasts; mPTP, mitochondrial permeability transition pore; MTG, MitoTracker Green FM; mt-mKeima, mito-mKeima; MT-ND1, mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; PBS, phosphate-buffered saline; PE, phosphatidylethanolamine; PI, propidium iodide; PRKN, parkin RBR E3 ubiquitin protein ligase; SDS, sodium dodecyl sulfate; SQSTM1/p62, sequestome 1; STS, staurosporine; sgRNA, single guide RNA; SILAC, stable isotope labeling with amino acids in cell culture; TFA, trifluoroacetic acid, TMRM, tetramethylrhodamine methyl ester perchlorate; WM, wortmannin; WT, wild-type  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号