首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Life sciences》1987,40(15):1537-1543
The pineal gland and particularly its major hormone, melatonin, may participate in several physiological functions, including sleep promotion, anticonvulsant activity and the modulation of biological rhythms and affective disorders. These effects may be related to an interaction with benzodiazepine receptors, which have been demonstrated to be present in the pineal gland of several species including man. The present study examined the characteristics of benzodiazepine binding site subtypes in the human pineal gland, using [3H] flunitrazepam and [3H] PK 11195 as specific ligands for central and peripheral type benzodiazepine binding sites respectively. Scatchard analysis of [3H] flunitrazepam binding to pineal membrane preparations was linear, indicating the presence of a single population of sites. Clonazepam and RO 15-1788, which have a high affinity for central benzodiazepine binding sites, were potent competitors for [3H] flunitrazepam binding in the human pineal, whereas RO 5-4864 had a low affinity for these sites. Analyses of [3H] PK 11195 binding to pineal membranes also revealed the presence of a single population of sites. RO 5-4864, a specific ligand for peripheral benzodiazepine binding sites was the most potent of the drugs tested in displacing [3H] PK 11195, whereas clonazepam and RO 15-1788 were weak inhibitors of [3H] PK 11195 binding to pineal membranes. Overall, these results demonstrate, for the first time, the coexistence of peripheral and central benzodiazepine binding sites in the human pineal gland.  相似文献   

2.
The density of bovine peripheral-type benzodiazepine receptors (PBR) in four tissues was highest in adrenal cortex. The adrenal cortex PBR cofractionated with a mitochondrial membrane marker enzyme and could be solubilized with intact ligand binding properties using digitonin. The membrane bound and soluble mitochondrial receptors were pharmacologically characterized and showed the rank order of potency to inhibit [3H]PK 11195 binding was PK 11195 greater than protoporphyrin IX greater than benzodiazepines (clonazepam, diazepam, or Ro5-4864). [3H]PK 11195 binding to bovine adrenal mitochondria was unaffected by diethylpyrocarbonate, a histidine residue modifying reagent that decreased binding to rat liver mitochondria by 70%. [3H]PK 14105 photolabeled the bovine PBR and the Mr was estimated under nondenaturing (200 kDa) and denaturing (17 kDa) conditions. These results demonstrate the bovine peripheral-type benzodiazepine receptor is pharmacologically and biochemically distinct from the rat receptor, but the receptor component photolabeled by an isoquinoline ligand has a similar molecular weight.  相似文献   

3.
[3H]PK 11195 binding to peripheral type benzodiazepine binding sites in kidney membranes is inhibited by the histidine blocking agent diethylpyrocarbonate. This reagent irreversibly decreases the Bmax for [3H]PK 11195 without affecting the affinity. By contrast binding of [3H]RO5-4864 is not affected by diethylpyrocarbonate treatment. However RO5-4864 can protect in a concentration dependent manner the [3H]PK 11195 binding site from diethylpyrocarbonate whereas clonazepam and RO15-1788 are not active. These results suggest that PK 11195 and RO5-4864 interact with different conformational states of the receptors that RO5-4864. This is in agreement with our previous hypothesis that PK 11195 is an antagonist and RO5-4864 an agonist at the "peripheral type" benzodiazepine receptors.  相似文献   

4.
The [3H]PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide, binding sites in rat cardiac membranes are saturable, with high affinity, specific GABA-independent and correspond to the peripheral type of benzodiazepine. The order of potency of displacing agents was: PK 11195 greater than RO5-4864 greater than dipyridamole greater than diazepam greater than clonazepam. The Bmax obtained with [3H]PK 11195 was equivalent of the Bmax obtained with [3H]RO5-4864 in the same experimental conditions. However thermodynamic analysis indicates that the [3H]PK 11195 binding was entropy driven whereas the [3H]RO5-4864 binding was enthalpy driven. Consequently PK 11195 might be an antagonist of these binding sites and RO5-4864 an agonist or a partial agonist. The simultaneous use of both drugs might help to elucidate the physiological relevance of peripheral benzodiazepine binding sites.  相似文献   

5.
PK 11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide] is a new ligand for the "peripheral-type" benzodiazepine binding sites, chemically unrelated to benzodiazepines. It displaces with a very high potency (IC50 congruent to 10(-9) M) [3H]-RO5-4864 (a benzodiazepine which specifically labels the peripheral-type sites) from its binding sites. [3H]PK 11195 binds to a membrane fraction from rat brain cortex and rat olfactory bulb in a saturable and reversible manner with a very high affinity (KD = 10(-9) M). The number of maximal binding sites was ten times greater in the olfactory bulb than in the brain cortex. The order of potency of several compounds as displacers at 25 degrees C (PK 11195 greater than RO5-4864 greater than diazepam greater than dipyridamole greater than clonazepam) demonstrates that [3H]PK 11195 binds to the peripheral-type benzodiazepine binding sites. The KD value for the [3H]PK 11195 binding is not affected by temperature changes, whereas RO5-4864 and diazepam affinities decrease with increasing temperatures. Autoradiographic images of [3H]PK 11195 binding to rat brain sections show that binding sites are mainly localized in the olfactory bulb, median eminence, choroid plexus, and ependyma. This ligand could be a useful tool to elucidate the physiological and pharmacological relevance of these binding sites.  相似文献   

6.
M Awad  M Gavish 《Life sciences》1988,43(2):167-175
The present study demonstrates a differential effect of various detergent treatments on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 (0.0125%) caused a decrease of about 70% in [3H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [3H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [3H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [3H]Ro 5-4864 and [3H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [3H]Ro 5-4864 binding, while [3H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin. These results may further support the assumption that Ro 5-4864 and PK 11195 are agonist and antagonist, respectively, of PBS and interact with two different conformations or domains in the peripheral-type benzodiazepine binding site molecule.  相似文献   

7.
High affinity binding of isoquinolines, such as PK 11195, is a conserved feature of peripheral-type benzodiazepine receptors (PBR) across species. However, species differences in PBR ligand binding have been described based on the affinity for N1-alkyl-1,4-benzodiazepines, such as Ro5-4864. Ro5-4864 binds with high affinity to the rat receptor but has low affinity for the bovine PBR. Photolabeling with an isoquinoline ligand, [3H]PK 14105, identifies a 17-kDa protein, the PBR isoquinoline binding protein (PBR/IBP), in both species. To further elucidate the role of the PBR/IBP in determining PBR benzodiazepine and isoquinoline binding characteristics, the bovine PBR/IBP was cloned and expressed. Using a cDNA encoding a rat PBR/IBP to screen a fetal bovine adrenal cDNA library, a bovine cDNA encoding a polypeptide of 169 residues was cloned. The bovine and rat PBR/IBPs had similar hydropathy profiles exhibiting five potential transmembrane domains. Transfecting the cloned bovine PBR/IBP cDNA into COS-7 cells resulted in an 11-fold increase in the density of high affinity [3H]PK 11195 binding sites which had only low affinity for Ro5-4864. Expression of the bovine PBR/IBP yields a receptor which is pharmacologically distinct from both endogenous COS-7 PBR and the rat PBR based on the affinity for several N1-alkyl-1,4-benzodiazepine ligands. These results suggest the PBR/IBP is the minimal functional component required for PBR ligand binding characteristics and the different protein sequences account for the species differences in PBR benzodiazepine ligand binding.  相似文献   

8.
P Lévy  J Picard  A Bruel 《Life sciences》1984,35(26):2613-2620
Two compounds with high affinity for the "peripheral type" benzodiazepine binding sites, PK 11195 (an isoquinoline derivative) and RO5-4864 (a benzodiazepine derivative) can modify the sensitivity of DBA/2J mice to audiogenic seizures. RO5-4864 (1-15 mg/kg) facilitates in a dose-dependent manner the audiogenic seizures and PK 11195 (2-5 mg/kg) antagonizes the RO5-4864 effects. At these doses PK 11195 alone does not modify the sensitivity to audiogenic seizures, but at doses between 20-80 mg/kg it protects DBA/2J mice against audiogenic seizures. By contrast PK 11195 is inactive against the facilitation of audiogenic seizures by ethyl-beta-carboline-3-carboxylate (a brain benzodiazepine receptor inverse agonist) and against the seizure elicited in absence of noise stimuli by RO5-4864 at doses between 20-40 mg/kg. These results suggest that facilitation by RO5-4864 of the audiogenic seizures and its antagonism by PK 11195 are mediated by the peripheral type benzodiazepine binding sites and agree with the thermodynamic analysis of the binding data which suggested that RO5-4864 might be an agonist and PK 11195 an antagonist. The good correlation between pharmacological effects and the occupancy degree of the binding sites as measured by the displacement of the "in vivo" [3H]-PK 11195 binding give an additional support to binding sites mediated effects.  相似文献   

9.
The present study demonstrates for the first time the solubilization of peripheral-type benzodiazepine binding sites (PBS) from cat cerebral cortex. Of all detergents tested [digitonin, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholate, and Triton X-100] in the presence of NaCl, the best solubilization (15% of initial activity) was obtained using 0.5% of the zwitterionic detergent CHAPS plus 2 M NaCl. Specific binding of [3H]PK 11195 to membrane-bound and solubilized PBS was saturable, yielding equilibrium dissociation constants (KD) of 1.3 +/- 0.2 and 1.9 +/- 0.3 nM, respectively, and maximal numbers of binding sites of 1,435 +/- 150 and 980 +/- 126 fmol/mg protein, respectively. The KD value of PK 11195 binding to solubilized PBS obtained from experimental kinetic analysis was 0.95 +/- 0.09 nM. The relative potencies of various compounds (PK 11195, Ro 5-4864, diazepam, flunitrazepam, clonazepam, methyl-beta-carboline-3-carboxylate, and Ro 15-1788) in displacing [3H]PK 11195 specific binding from membrane-bound and solubilized PBS were similar. Most of the solubilized binding activity was destroyed by heating at 60 degrees C for 30 min or by treatment with 2 M guanidinium chloride, which indicates the presence of a protein-binding site in the solubilized preparation. Over 85% of the solubilized binding activity was retained after 1 week at 4 degrees C, which will enable future application of purification procedures without major concern for stability of the material.  相似文献   

10.
[3H] R05-4864 binding sites have been characterized in kidney, heart, brain, adrenals and platelets in the rat. In all these organs the following order of potency in the R05-4864 displacement was found : R05-4864 > diazepam > clonazepam indicating that they correspond to the “peripheral type” of benzodiazepine binding sites. PK 11195, an isoquinoline carboxamide derivative, displaces [3H] R05-4864 from its binding sites in all the organs. PK 11195 was as potent as R05-4864 in the platelets, heart, adrenals, kidney and several brain regions (midbrain, hypothalamus, medulla + pons and hippocampus. However it was 5 to 10 times more effective in cortex and striatum. In conclusion PK 11195 might represent a new tool to elucidate the physiological relevance of “peripheral type” benzodiazepine binding sites and might help to discriminate the hypothetical subclasses of these binding sites.  相似文献   

11.
Abstract

The effect of various detergents treatment on the specific binding of [3H]PK 11195 (2nM) to peripheral-type benzodiazepine binding sites (PBS) in calf and rat kidney, adrenal gland, and cerebral cortex membranes was studied. At a concentration of 0.025%, Triton X-100 increased [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes by 20–40%. At the same concentration, Triton X-100 scarcely affected specific binding of [3H]PK 11195 to rat cerebral cortex but decreased binding to rat kidney and adranal gland membranes by 20–30%. At a concentration of 0.05% of Triton X-100, [3H]PK 11195 specific binding to calf kidney, adrenal gland, and cerebral cortex membranes was increased by 10–20%; whereas [3H]PK 11195 specific binding to rat kidney, adrenal gland, and cerebral cortex membranes was decreased by more than 40%. The increase in [3H]PK 11195 specific binding to calf kidney membranes following Triton X-100 (0.05%) treatment was apparently due to an increase in the binding affinity of PBS, since the density remained unaltered; whereas, the decrease in [3H]PK 11195 specific binding to rat kidney membranes was due to a decrease in both binding affinity and density of PBS. On the other hand, the detergents 3- [(3- cholamidopropyl)- dimethylammonio] - 1 - propane sulfonate (CHAPS), Tween 20, deoxycholic acid, and digitonin have a similar effect on [3H]PK 11195 specific binding to PBS in both calf and rat kidney membranes.  相似文献   

12.
Peripheral type of benzodiazepine binding sites were labelled in the kidney, the heart and the brain with [3H] RO5-4864 following intravenous injection in mice. The regional distribution of this in vivo binding parallels the in vitro binding: heart and kidney were more labelled than brain. Benzodiazepine potencies in reducing [3H] RO5-4864 binding in vivo parallel relative affinities for [3H] RO5-4864 binding sites in isolated organs membranes: RO5-4864 greater than diazepam greater than clonazepam. PK 11195 a new compound, chemically unrelated to benzodiazepines, which is a potent inhibitor of [3H] RO5-4864 in vitro is also very effective (more than RO5-4864) after I.P. injection and oral administration. These results emphasize the feasibility of using this technique to examine the effects on various pharmacological and physiological manipulations of these binding sites in vivo. Moreover the fact that PK 11195 binds to these sites in vivo might indicate that this compound could help to elucidate the physiological relevance of the peripheral type of benzodiazepine binding sites.  相似文献   

13.
Abstract: The binding of [3H]flunitrazepam, [3H]RO 5-4864, and [3H]PK 11195 to membrane preparations of the retina was studied in the turtle and rabbit. Only a single population of [3H]flunitrazepam binding sites was detected in the turtle, whereas two populations appeared to be present in the rabbit. No specific binding for [3H]RO 5-4864 and [3H]PK 11195 could be detected in the turtle. In rabbit, both ligands bound with high affinity, revealing a significant population of binding sites (KD values of 24 ± 2.3 and 2.2 ± 0.8 nM, and Bmax values of 440 ± 35 and 1,482 ± 110 fmol/mg of protein, respectively). The binding was temperature - and protein-dependent. Displacement studies showed a similar rank order of potency of various unlabeled ligands against both [3H]RO 5-4864 and [3H]PK 11195 (PK 11195 > Ro 5-4864 > flunitrazepam > flumazenil). These results suggest that peripheral-type benzodiazepine receptors are present in the retina of the rabbit, but not of the turtle.  相似文献   

14.
Peripheral-type benzodiazepine binding sites are not normally present in most cerebral tissues, but following neuronal damage, the cells involved in the ensuing gliosis show a marked expression of these sites. In a unilateral excitotoxic striatal lesion in the rat, we sought to determine whether the isoquinoline derivatives PK11195 and PK14105 bind to these sites in vivo and whether demonstration of these sites offers the potential of indirectly localising areas of neuronal damage. Binding was studied at several intervals after coinjection of [3H]PK11195 and [18F]PK14105 to determine the time courses of specific binding. Both compounds were rapidly extracted into all cerebral tissues, but in the absence of binding sites in nonlesioned tissues, this was followed by a rapid clearance of radioactivity. In lesioned areas, both [3H]PK11195 and [18F]PK14105 accumulated over the first 5 min followed by a much slower clearance of radioactivity, resulting in a "specific signal." [3H]PK11195 binding peaked at 20-30 min postinjection, with radioactivity in the lesioned striatum being three times greater than in its contralateral homologue. The specific signal was present for at least 60 min. The maximal [18 F]PK14105-specific signal was of similar magnitude but peaked earlier and was retained for only 45 min. Specific signals with both ligands were also detected in regions remote from the primary lesion site, e.g., in the hippocampus and substantia nigra. Predosing animals with a large dose of PK11195 (3 mg/kg), sufficient to saturate peripheral-type benzodiazepine binding sites, abolished in vivo binding of both [3H]PK11195 and [18F]PK14105 to both primary- and remote-lesioned tissues. The specific signal with both ligands could be of sufficient magnitude and duration to make tomographic studies in humans feasible.  相似文献   

15.
High-affinity binding sites for [3H]PK 11195 have been detected in brain membranes of rainbow trout (Salmo gairdneri) and mouse forebrain, where the densities of receptors were 1,030 and 445 fmol/mg of protein, respectively. Ro 5-4864 (4'-chlorodiazepam) was 2,200-fold less potent as a competitor of [3H]PK 11195 binding in the piscine than the murine membranes. Investigation of the regional distribution of these sites in trout yielded a rank order of density of spinal cord greater than olfactory bulb = optic tectum = rhombencephalon greater than cerebellum greater than telencephalon. This site in trout shared some of the characteristics of the peripheral-type benzodiazepine receptor (PTBR) (also known as the mitochondrial benzodiazepine receptor) in rodents, i.e., high affinity for PK 11195 and the endogenous ligand protoporphyrin IX, but was unique in the low affinity of Ro 5-4864 (41 microM) and diazepam and the relatively high affinity of the calcium channel ligand diltiazem and two central benzodiazepine ligands, CGS 8216 and CGS 9896. The differential affinity for the two prototypic PTBR ligands in trout is similar to that previously observed in calf and human brain membranes. Structural differences for the trout sites are indicated by the relative inability of diethyl pyrocarbonate to modify histidine residues of the binding site in trout as compared with mouse membranes. Heterogeneity of binding of the two prototypic PTBR ligands in mouse brain membranes was indicated by additivity studies, equilibrium competition experiments, and saturation isotherms, which together support the hypothesis that Ro 5-4864 discriminates between two [3H]PK 11195 binding sites having high (nanomolar) and low (micromolar) affinity, respectively.  相似文献   

16.
J Riond  N Vita  G Le Fur  P Ferrara 《FEBS letters》1989,245(1-2):238-244
The isoquinoline carboxamide derivative [3H]PK11195, a ligand for the peripheral-type benzodiazepine (BZD) receptor, binds to Chinese hamster ovary (CHO) cell mitochondria in a specific and saturable manner. Scatchard analysis showed the presence of a single-binding site with an apparent dissociation constant (Kd) of 12.0 +/- 1.0 nM and a maximal binding capacity of 23.0 +/- 2.0 pmol/mg protein. The pharmacological characterization of this CHO BZD-binding site, based on the displacement of [3H]PK11195 by several drugs of known binding specificity, indicated that it is of the peripheral-type. The photoaffinity probe [3H]PK14105, a nitrophenyl derivative of [3H]PK11195, specifically labeled a 17 kDa CHO mitochondrial protein. This 17 kDa protein was purified from digitonin-solubilized mitochondria by gel-filtration chromatography and two reverse-phase HPLC steps. The purified material migrated as a single band on silver stained or autoradiographed SDS-polyacrylamide gels, and had an amino acid composition corresponding to a 17 kDa protein rich in Leu, Val, Ala, Gly, and Pro. Analysis of the amino-terminal sequence of the purified 17 kDa protein revealed a blocked amino-terminus.  相似文献   

17.
M Awad  M Gavish 《Life sciences》1991,49(16):1155-1161
The specific binding of [3H]PK 11195 and [3H]Ro 5-4864 to human cerebral cortex, kidney, and colon membranes was studied in order to determine whether peripheral type benzodiazepine receptors (PBR) characteristics located in human tissues are similar to those located in calf or rat tissues. While [3H]PK 11195 (0.05-10 nM, final concentration) bound with high affinity (KD about 2 nM) to human cerebral cortex, kidney, and colon membranes, yielding maximal numbers of binding sites of 255 +/- 23, 1908 +/- 28, and 1633 +/- 98 fmol/mg protein, respectively, the specific binding of [3H]Ro 5-4864 (1.25-40 nM, final concentration), was barely detectable (nonspecific binding about 90% of the total binding). Furthermore, unlabeled PK 11195 was two orders of magnitude more potent than unlabeled Ro 5-4864 in displacing [3H]PK 11195 specific binding from human cerebral cortex and kidney membranes. These results indicate that PBR binding characteristics located in human tissues are similar (but not identical) to those located in calf tissues, but not to those located in rat tissues.  相似文献   

18.
S Mihara  M Fujimoto 《Life sciences》1989,44(22):1713-1720
Peripheral benzodiazepine (BZ) binding sites were characterized in porcine aortic smooth muscle membrane preparation. [3H]PK11195 bound with high affinity to the membranes (Kd = 8.6 + 0.9 nM), whereas [3H]Ro5-4864 bound slightly to the membranes. The Ki value of Ro5-4864 obtained from the inhibition of [3H]PK 11195 binding was 1200 + 200 nM, which was 480 times weaker than that obtained in rat kidney. Furthermore, the Ro5-4864 effect was temperature-insensitive. When [3H]PK 11195 binding was examined in porcine, human and rat platelets, Ro5-4864 inhibited the binding in porcine and human platelets one order of magnitude less potently than that in rat platelets. These results suggest that low affinity for Ro5-4864 in porcine aorta smooth muscle originates in porcine tissue, but not in smooth muscle.  相似文献   

19.
The effects of two drugs acting at the peripheral type benzodiazepine binding sites, PK 11195 and RO5-4864, were examined in shock-induced suppression of drinking in rats. These two compounds have opposite effects : RO5-4864 (3.1-1205 mg/kg i.p.) enhanced whereas PK 11195 (25-50 mg/kg i.p.) decreased the punished responding, and PK 11195 (6.25 mg/kg, a dose which did not alter the punished responding) blocked the proconflict action of RO5-4864 (6.25 and 12.5 mg/kg). The effects of RO5-4864 and PK 11195 were not antagonized by RO15-1788, a selective antagonist of the central benzodiazepine site. In addition, PK 11195 (6.25 mg/kg) did not reverse the proconflict effect of two beta-carbolines : beta-CEE and FG 7142. AS picrotoxin did not change the punished responding, these data imply that the effects of RO5-4864 and PK 11195 on the one hand and those of chlordiazepoxide and beta-carbolines on the other hand are differentially mediated and suggest that the peripheral type benzodiazepine binding sites are involved in this conflict model.  相似文献   

20.
We have assessed the effects of in vivo administration of different classes of diuretic drugs on the expression of the peripheral-type benzodiazepine binding site (PBBS) in crude membranes derived from the cortex and outer medulla of rat kidney by saturation analysis with the PBBS-selective ligands [3H]RO5-4864 and [3H]PK 11195 in cortex and [3H]RO5-4864 in outer medulla. Administration for 14-15 days of furosemide, a drug that blocks NaCl-KCl coupled transport in the thick ascending limb of the loop of Henle, produced a significant doubling in the PBBS density (Bmax) in outer medulla, a region of the kidney rich in thick ascending limbs, and produced a lesser but significant increase in PBBS density in the cortex. Conversely, administration for 14-15 days of the carbonic anhydrase inhibitor acetazolamide, which acts predominantly in the proximal tubule, and hydrochlorothiazide, which acts predominantly in the early distal tubule, elicited statistically significant increases in PBBS density in renal cortex but not in renal outer medulla. Furthermore, all drug treatments were without effect on the equilibrium dissociation constants (Kds) of [3H]RO5-4864 and [3H]PK 11195 binding to cortical and outer medullary membrane preparations. These findings demonstrate that the PBBS can be selectively "up-regulated" in different regions of the kidney by diuretic drugs with different modes/sites of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号