首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active opioid receptors were solubilized from frog (Rana esculenta) brain membrane fractions by the use of 1% digitonin. It was found by kinetic as well as by equilibrium measurements that both the membrane and the solubilized fractions contain two binding sites. For the membrane preparations, KD values were 0.9 and 3.6 nM, and Bmax values were 293 and 734 fmol/mg protein. For the solubilized preparations, KD values were 0.4 and 2.6 nM, an Bmax values were 35 and 266 fmol/mg protein. The stereospecificity of the binding did not change during solubilization. Both the membrane-bound and the solubilized receptors showed weak binding of enkephalin and mu-specific drugs, suggesting that they are predominantly of the kappa-type. The membrane-bound and the soluble receptors showed the same distribution of subtypes, i.e., 70% kappa, 13% mu, and 17% delta for the membrane-bound and 71% kappa, 17% mu, and 12% delta for the soluble receptors.  相似文献   

2.
The mobility of purified mu opioid binding protein in SDS-polyacrylamide gek electrophoresis is sensitive to the presence of reducing agents. In the presence of increasing concentrations of DTT the apparent molecular weight increases in a stepwise fashion from 53 kDa to 65 kDa. This reduction in mobility is attributed to the successive breakage of disulfide bridges, resulting in an increasingly asymmetric molecule. Treatment of cell membranes from various brain areas with reducing agents, such as DTT, produced a concentration-dependent inhibition of opioid binding. Sensitivity to DTT inhibition varied between receptor types, mu greater than delta much greater than kappa. For mu receptors, agonist binding was considerably more sensitive to DTT than antagonist binding. Inhibition by DTT is readily reversible and is unaffected by Na+ and/or Mg2+ ions. Reversibility may be partially prevented by the inclusion of a low concentration of a reducing reagent such as glutathione which does not inhibit binding but blocks reformation of disulfide bonds. Scatchard analysis of saturation data shows that DTT causes a pronounced decrease in binding affinity with little effect on receptor number. It is suggested that disulfide bonds are essential for ligand binding and that cleavage of one or more of these bonds may play a role in opioid receptor activation by agonists.  相似文献   

3.
Gray AC  Coupar IM  White PJ 《Life sciences》2006,79(7):674-685
The opioid receptors, mu, delta and kappa, conduct the major pharmacological effects of opioid drugs, and exhibit intriguing functional relationships and interactions in the CNS. Previously established hypotheses regarding the mechanisms underlying these phenomena specify theoretical patterns of relative cellular localisation for the different receptor types. In this study, we have used double-label immunohistochemistry to compare the cellular distributions of delta and kappa receptors with those of mu receptors in the rat CNS. Regions of established significance in opioid addiction were examined. Extensive mu/delta co-localisation was observed in neuron-like cells in several regions. mu and kappa receptors were also often co-localised in neuron-like cell bodies in several regions. However, intense kappa immunoreactivity (ir) also appeared in a separate, morphologically distinct population of cells that did not express mu receptors. These small, ovoid cells were often closely apposed against the larger, mu-ir cell bodies. Such cellular appositions were seen in several regions, but were particularly common in the medial thalamus, the periaqueductal grey and brainstem regions. These findings support proposals that functional similarities, synergy and cooperativity between mu and delta receptors arise from widespread co-expression by cells and intracellular molecular interactions. Although co-expression of mu and kappa receptors was also detected, the appearance of a separate population of kappa-expressing cells supports proposals that the contrasting and functionally antagonistic properties of mu and kappa receptors are due to expression in physiologically distinct cell types. Greater understanding of opioid receptor interaction mechanisms may provide possibilities for therapeutic intervention in opioid addiction and other conditions.  相似文献   

4.
Rat brain opioid receptors were solubilized with digitonin and a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The yield of solubilization was 70-75% with digitonin and 30-35% with CHAPS. Kinetic and equilibrium studies performed from digitonin extracts resulted in KD values comparable with those of the membrane fractions. Two [3H]naloxone binding sites were obtained in the extracts similarly to membrane fractions. The rank order potency of drugs used in the competition experiments did not change during solubilization. The distributions of mu, delta, and kappa opioid receptor binding sites were similar in membrane and digitonin-solubilized fractions (48-50% mu, 35-37% kappa, and 13-17% delta subtypes). The hydrodynamic properties of digitonin- and CHAPS-solubilized preparations were studied by sucrose density gradient centrifugation and Sepharose-6B chromatography. In all cases, two receptor populations were identified with the following parameters: sedimentation coefficients for the digitonin extracts were 9.2S and 13.2S and for CHAPS extract 8S and 15.6S; the Stokes radii were 45 A and 65A for the digitonin extract and 31A and 76A for the CHAPS-solubilized preparation.  相似文献   

5.
Kim KW  Son Y  Shin BS  Cho KP 《Life sciences》2001,68(11):1305-1315
Naltriben (NTB) has been used to differentiate the subtypes of delta opioid receptors, delta1 and delta2. However, there is considerable evidence suggesting that NTB may act on other types of opioid receptors too. We examined the effects of NTB on the specific binding of radiolabeled ligands for opioid mu and kappa2 receptors, and the effects on the release of [3H]norepinephrine ([3H]NE) in rat cerebral cortex slices. NTB displaced the specific binding of [3H]DAMGO with Ki value of 19.79 +/- 1.12 nM in rat cortex membranes. Specific binding of [3H]diprenorphine ([3H]DIP) was inhibited by NTB with Ki value of 82.75 +/- 6.32 nM in the presence of DAMGO and DPDPE. High K+ (15 mM)-stimulated release of [3H]NE was attenuated by DAMGO in rat cerebral cortex slices. NTB (30 nM) shifted the dose-response curve of DAMGO to the right and attenuated the maximal effect. In the meantime, NTB inhibited high K+-stimulated [3H]NE release at concentrations above 100 nM. The inhibitory effect of NTB was not attenuated by CTAP (10 nM) and naloxone (3 nM) but by higher concentration of naloxone (30 nM), nor-BNI (300 nM) and bremazocine (3 nM). These results indicate that NTB, depending on the dosage, could acts not only as an antagonist at delta but also as a noncompetitive antagonist for mu receptors, and as an agonist for kappa2 receptors in rat cerebral cortex.  相似文献   

6.
The kappa nature of opioid binding sites in a brush border membrane (BBM) fraction from human placenta has been confirmed: these sites display considerably higher apparent affinity (KI = 1.2 nM) for the kappa selective ligand U-50488 than they do for the mu and delta selective ligands [D-Ala2, MePhe4, Glyol5] enkephalin (KI = 1.5-2 microM) and [D-Thr2, Leu5] enkephalyl-Thr (KI = 10-15 microM), respectively. The BBM fraction from human placenta was incubated either with the agonist 3H-etorphine or with the antagonist 3H-diprenorphine and subsequently solubilized with digitonin. The solubilized macromolecular radioactivity was found to behave as a homogeneous entity both in molecular exclusion chromatography (app. rs = 6.1 nm) and in linear sucrose gradients (app. S20.w = 12 S). Two lines of evidence indicated that the placental kappa opioid receptor is capable of interacting with a guanine nucleotide regulatory (G) protein: (i) equilibrium binding of the agonist 3H-etorphine in the BBM fraction was clearly inhibited by 5'-guanylylimidodiphosphate (Gpp(NH)p), especially in the presence of Na+ ions while binding of the antagonist 3H-diprenorphine was significantly less so and (ii) the sedimentation velocity of the kappa opioid receptor was decreased down to about 10 S when the BBM fraction was prelabeled with radioligand in the presence of Gpp(NH)p prior to its solubilization with digitonin. The G protein that mediates the effect of Gpp(NH)p might be neither Gs nor Gi since no adenylate cyclase activity could be demonstrated in the BBM fraction from human placenta.  相似文献   

7.
Opioid receptor-coupled second messenger systems   总被引:19,自引:0,他引:19  
S R Childers 《Life sciences》1991,48(21):1991-2003
Although pharmacological data provide strong evidence for different types of opioid receptors (e.g., mu, delta, and kappa), they share many common properties in their ability to couple to second messenger systems. All opioid receptor types are coupled to G-proteins, since agonist binding is diminished by guanine nucleotides and agonist-stimulated GTPase activity has been identified in several preparations. Moreover, all three types inhibit adenylyl cyclase. This second messenger system has been identified for opioid receptors in both isolated brain membranes and in transformed cell culture. Studies with chronic treatment with opioid agonists suggest that the coupling of receptors with G-proteins and second messenger effectors may play important roles in development of opioid tolerance.  相似文献   

8.
Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.  相似文献   

9.
We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions.  相似文献   

10.
125I-beta-Endorphin (human) binds with high affinity, specificity, and saturability to rat brain and neuroblastoma X glioma hybrid cell (NG 108-15) membranes. Dissociation constants and binding capacities were obtained from Scatchard plots and are 2 nM and 0.62 pmol/mg of protein for rat whole brain and 6 nM and 0.8 pmol/mg of protein for NG 108-15 cells. Results from competition experiments also indicate that this ligand interacts with high affinity with both mu and delta opioid binding sites, with a slight preference for mu sites, while exhibiting low affinity at kappa sites. We have demonstrated that human 125I-beta-endorphin is a useful probe for the investigation of the subunit structure of opioid receptors. The specific cross-linking of this ligand has revealed the presence of four reproducible bands or areas after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography at 65, 53, 38, and 25 kDa. All labeled bands seem to be opioid receptor related since they are eliminated when binding is carried out in an excess of various opiates. The evidence we have obtained using rat whole brain (delta congruent to mu), rat thalamus (largely mu), bovine frontal cortex (delta:mu congruent to 2:1), and NG 108-15 cells (delta) demonstrates that different labeling patterns are obtained when mu and delta binding sites are cross-linked. The pattern obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from cross-linked mu sites contains a major (heavily labeled) component of 65 kDa and a minor component of 38 kDa, while patterns from delta sites contain a major labeled component of 53 kDa. This 53-kDa band appears clearly in extracts from NG 108-15 cells and bovine frontal cortex, while in rat whole brain a diffusely labeled region is present between 55 and 41 kDa. In addition, NG 108-15 cells also display a minor labeled component at 25 kDa. The relationship of the minor bands to the major bands is not clear.  相似文献   

11.
We present substantial new evidence for at least four distinct types of opioid receptors in rat brain, using quantitative ligand binding studies and mathematical modeling. Three of these binding sites are consistent with the well established "mu", "delta" and "kappa" receptors. The fourth has two distinctive features: 1) extremely high affinity (dissociation constant less than 1 nM); 2) almost complete lack of specificity for the classical "delta" or "mu" selective ligands. These properties are consistent with the putative "mu1" receptor described by Pasternak and coworkers.  相似文献   

12.
A series of new N-substituted derivatives of morphinan was synthesized and their binding affinity for the three opioid receptors (mu, delta, and kappa) was determined. A paradoxical effect of N-propargyl (MCL-117) and N-(3-iodoprop-(2E)-enyl) (MCL-118) substituents on the binding affinities for the mu and kappa opioid receptors was observed. All of these novel derivatives showed a preference for the mu and kappa versus delta binding.  相似文献   

13.
We previously reported that the novel dynorphin A (Dyn A, Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln) analog arodyn (Ac[Phe(1,2,3),Arg(4),d-Ala(8)]Dyn A-(1-11)NH(2), Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617-5619) is a kappa opioid receptor-selective peptide [K(i)(kappa) = 10 nm, K(i) ratio (kappa/mu/delta) = 1/174/583] which exhibits antagonist activity at kappa opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure-activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d-amino acid substitution in the N-terminal 'message' sequence, NMePhe substitution individually in positions 1-3, and modifications in position 1. The results for the Ala-substituted derivatives indicated that Arg(6) and Arg(7) are the most important residues for arodyn's nanomolar binding affinity for kappa opioid receptors. Ala substitution of the other basic residues (Arg(4), Arg(9) and Lys(11)) resulted in lower decreases in affinity for kappa opioid receptors (three- to fivefold compared with arodyn). Of particular interest, while [Ala(10)]arodyn exhibits similar kappa opioid receptor binding as arodyn, it displays higher kappa vs. mu opioid receptor selectivity [K(i) ratio (kappa/mu) = 1/350] than arodyn because of a twofold loss in affinity at mu opioid receptors. Surprisingly, the Tyr(1) analog exhibits a sevenfold decrease in kappa opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr(1)]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing kappa opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe(1)]arodyn which exhibits high affinity [K(i)(kappa) = 4.56 nm] and exceptional selectivity for kappa opioid receptors [K(i) ratio (kappa/mu/delta) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A-(1-13)NH(2). Thus [NMePhe(1)]arodyn is a highly kappa opioid receptor-selective antagonist that could be a useful pharmacological tool to study kappa opioid receptor-mediated activities.  相似文献   

14.
[3H]Naltrindole binding characteristics were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C measured an equilibrium dissociation constant (Kd) value of 37.0 +/- 3.0 pM and a receptor density (Bmax) value of 63.4 +/- 2.0 fmol/mg protein. Association binding studies showed that equilibrium was reached within 90 min at a radioligand concentration of 30 pM. Naltrindole, as well as the ligands selective for delta (delta) opioid receptors, such as pCI-DPDPE and Deltorphin II inhibited [3H]naltrindole binding with nanomolar IC50 values. Ligands selective for mu (mu) and kappa (kappa) opioid receptors were only effective in inhibiting [3H]naltrindole binding at micromolar concentrations. From these data, we conclude that [3H]naltrindole is a high affinity, selective radioligand for delta opioid receptors.  相似文献   

15.
Mu opioid receptor antagonists have clinical utility and are important research tools. To develop non-peptide and highly selective mu opioid receptor antagonist, a series of 14-O-heterocyclic-substituted naltrexone derivatives were designed, synthesized, and evaluated. These compounds showed subnanomolar-to-nanomolar binding affinity for the mu opioid receptor. Among them, compound 1 exhibited the highest selectivity for the mu opioid receptor over the delta and kappa receptors. These results implicated an alternative ‘address’ domain in the extracellular loops of the mu opioid receptor.  相似文献   

16.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

17.
The binding sites for opiates (agonist and antagonist) and opioid peptides can be solubilized from rat brain membranes with digitonin in the presence of Mg2+ (10 mM). High affinity and high capacity binding to the soluble delta, mu, and kappa receptors is obtainable when the membranes are treated in Mg2+ (30 degrees C, 60 min) prior to solubilization. The yields of solubilized binding sites extracted with digitonin, 40-90%, are higher than those obtained from Mg2+-pretreated membranes with other detergents commonly used for receptor solubilization. The stability of the digitonin-soluble opioid receptor at room temperature makes it useful for purification and characterization.  相似文献   

18.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

19.
Xu W  Chen C  Huang P  Li J  de Riel JK  Javitch JA  Liu-Chen LY 《Biochemistry》2000,39(45):13904-13915
Binding pockets of the opioid receptors are presumably formed among the transmembrane domains (TMDs) and are accessible from the extracellular medium. In this study, we determined the sensitivity of binding of [(3)H]diprenorphine, an antagonist, to mu, delta, and kappa opioid receptors to charged methanethiosulfonate (MTS) derivatives and identified the cysteine residues within the TMDs that conferred the sensitivity. Incubation of the mu opioid receptor expressed in HEK293 cells with MTS ethylammonium (MTSEA), MTS ethyltrimethylammonium (MTSET), or MTS ethylsulfonate (MTSES) inhibited [(3)H]diprenorphine binding with the potency order of MTSEA > MTSET > MTSES. Pretreatment of mu, delta, and kappa opioid receptors with MTSEA dose-dependently inhibited [(3)H]diprenorphine binding with MTSEA sensitivity in the order of kappa > mu > delta. The effects of MTSEA occurred rapidly, reaching the maximal inhibition in 10 min. (-)-Naloxone, but not (+)-naloxone, prevented the MTSEA effect, demonstrating that the reaction occurs within or in the vicinity of the binding pockets. Each cysteine residue in the TMDs of the three receptors was mutated singly, and the effects of MTSEA treatment were examined. The mutants had similar affinities for [(3)H]diprenorphine, and C7. 38(321)S, C7.38(303)S, and C7.38(315)S mutations rendered mu, delta, and kappa opioid receptors less sensitive to the effect of MTSEA, respectively. These results indicate that the conserved Cys7.38 is differentially accessible in the binding-site crevice of these receptors. The second extracellular loop of the kappa receptor, which contains several acidic residues, appears to play a role, albeit small, in its higher sensitivity to MTSEA, whereas the negative charge of Glu6.58(297) did not. To the best of our knowledge, this is the first report to show that a conserved residue among highly homologous G protein-coupled receptors is differentially accessible in the binding-site crevice. In addition, this represents the first successful generation of MTSEA-insensitive mutants of mu, delta, and kappa opioid receptors, which will allow determination of residues accessible in the binding-site crevices of these receptors by the substituted cysteine accessibility method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号