首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to systematically analyse the design and results of epidemiological studies on the association between various types of cancer (lung, bladder, breast, colon, stomach) and four genetically-based metabolic polymorphisms, involved in the metabolism of several carcinogens (glutathione-S-transferase M1, debrisoquine hydroxylase, N acetyltransferase, aryl hydrocarbon hydroxylase). These inherited polymorphisms usually cause modifications in the quality or quantity of the relevant enzymes. Such enzymes are involved in the activation/inactivation of known carcinogens and seem to modify the extent to which carcinogens interact with DNA in target tissues. Two enzymes, debrisoquine hydroxylase and aryl hydrocarbon hydroxylase, activate procarcinogens to carcinogens (phase I enzymes). The other two, glutathione-S-transferase M1 and N-acetyltransferase, mainly detoxity carcinogenic substances (phase II enzymes). Because of their role as host factors (modulating the action of carcinogens), it has been hypothesized that subjects presenting a specific phenotype for such polymorphisms could be at a greater risk of developing various types of cancer. A number of epidemiological studies have investigated such associations, often with discordant results. We examine and discuss the design of the studies, and present a meta-analysis of the available data.  相似文献   

2.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

3.
The CYP1A1 gene encodes for the enzyme, aryl hydrocarbon hydroxylase, which is involved in the biotransformation of various aromatic tobacco precarcinogens. In the present study, the association between CYP1A1 gene polymorphisms (IVS1-728G > A, Thr461Asn and Ile462Val), and the risk of oral cancer, was examined among 157 patients with oral cancer and 132 age-matched controls, in a south Indian population. The strength of the association between CYP1A1 variants and oral cancer was estimated by logistic regression. It was found that Thr461Asn was not polymorphic. Both IVS1-728G > A and Ile462Val frequencies were consistent with Hardy-Weinberg equilibrium in the control group. There were no significant differences in genotype or haplotype frequencies between controls and cases with oral cancer. Hence, CYP1A1 SNPs can be considered as not being associated with oral cancer at either the genotype or haplotype levels in the population studied.  相似文献   

4.
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 14 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 58 from V. cinerea, and acetylenic thiophenes 911 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.  相似文献   

5.
Abstract

Certain dioxins, including 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD), are exogenous ligands for an aryl hydrocarbon receptor (AhR) and induces various drug-metabolizing enzymes. In this study, we examined the effect of curcumin on expression of drug-metabolizing enzymes through the AhR and NF-E2 related factor 2 (Nrf2) pathways. Curcumin dose-dependently inhibited TCDD-induced expression of phase I enzyme cytochrome P450 1A1 (CYP1A1) and phase II enzymes NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase 1 (HO-1) but not tert-butyl hydroquinone-induced NQO1 and HO-1, suggesting that curcumin inhibited only AhR pathway, but not Nrf2 one directly. Furthermore, we used 14 curcumin derivatives and obtained the correlation between hydrophobicity of the compounds and suppressive effect against AhR transformation. Results from the quantitative structure active correlative analysis indicated that methoxy groups and β-diketone structure possessing keto-enol tautomerism in curcumin were necessary to inhibit AhR transformation, and the addition of methyl and methoxy group(s) to the curcumin increased the inhibition effect.  相似文献   

6.
The arylamine N-acetyltransferase 2 (NAT2) enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A), M2 (NAT2*6A), M3 (NAT2*7) and M4 (NAT2 *14A) from the wild-type WT (NAT2 *4) allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05). However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05). There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively), but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively). Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR): 0.51, 95% confidence interval (95% CI): 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.  相似文献   

7.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

8.
The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.  相似文献   

9.
Cytochrome P450 1A1 (CYP1A1) is a phase I enzyme that regulates the metabolism of environmental carcinogens and alter the susceptibility to various cancers. Many studies have investigated the association between the CYP1A1 MspI and Ile462Val polymorphisms and digestive tract cancer (DTC) risk in different groups of populations, but their results were inconsistent. The PubMed and Embase Database were searched for case–control studies published up to 30th September, 2015. Data were extracted and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the relationship. Totally, 39 case–control studies (9094 cases and 12,487 controls) were included. The G allele in Ile/Val polymorphism was significantly associated with elevated DTC risk with per‐allele OR of 1.24 (95% CI = 1.09–1.41, P = 0.001). Similar results were also detected under the other genetic models. Evidence was only found to support an association between MspI polymorphism and DTC in the subgroups of caucasian and mixed individuals, but not in the whole population (the dominant model: OR = 1.19, 95% CI = 0.94–1.91, P = 0.146). In conclusion, our results suggest that the CYP1A1 polymorphisms are potential risk factors for DTC. And large sample size and well‐designed studies with detailed clinical information are needed to more precisely evaluate our founding.  相似文献   

10.
In vivo and in vitro studies were carried out to determine the effects of estradiol and other steroid hormones on aryl hydrocarbon hydroxylase-mediated binding of benzo(a)pyrene metabolites to DNA. Injection of female C57B16J mice with 0.2 mg or 2 mg of estradiol 24 hours prior to, during and 24 hours after injection of 3-methylcholanthrene resulted in a significant decrease in the capacity of hepatic microsomes from these animals to mediate the binding of benzo(a)pyrene metabolites to DNA when compared to microsomes from animals receiving 3 methylcholanthrene treatment only. Binding of benzo(a) pyrene metabolites was inhibited between 22 and 50%, depending on the dose of estradiol used. The enzyme and cytochrome components of the aryl hydrocarbon hydroxylase multienzymic complex were not affected by either estradiol treatment. The data suggests that estradiol inhibits aryl hydrocarbon hydroxylase mediated binding of benzo(a)pyrene metabolites to DNA by activity as a non-competitive inhibitor of aryl hydrocarbon hydroxylase activity.  相似文献   

11.
Harman and norharman, two β-carboline derivatives known to exist in certain foods and to be formed during pyrolysis of tobacco and meat, were tested for mutagenic activity in the presence of benzo[a]pyrene, mouse liver enzymes, and Salmonella typhimurium TA98 in vitro. Both harman and norharman inhibit benzo[a]pyrene mutagenicity, benzo[a]pyrene metabolism (as measured by aryl hydrocarbon hydroxylase activity), and the binding of all benzo[a]pyrene metabolites to DNA in vitro. Moreover, harman and norharman are quite toxic to cultures of hepatoma-derived H-4-II-E and Hepa-1 established cell lines and therefore were found to be very weak inducers of aryl hydrocarbon hydroxylase activity.  相似文献   

12.
Summary Polycyclic aromatic hydrocarbon-inducible monooxygenase directed toward the substrate benzo(a)pyrene, i.e., aryl hydrocarbon hydroxylase, was monitored in cell hybrids formed from mouse RAG cells and several human fibroblasts lines. In RAG cells no aryl hydrocarbon hydroxylase activity was detectable; however, these cells exhibited relatively high levels of NADPH cytochrome C (P-450) reductase (EC. 1.6.2.4). In 12 hybrids lines, induced aryl hydrocarbon hydroxylase segregated with human chromosome 2. The results indicate that the structural gene of the polycyclic aromatic hydrocarbon-inducible monooxygenase or gene(s) involved in the induction of the enzyme is located on human chromosome 2.Abbreviations AHH aryl hydrocarbon hydroxylase - IDH isocitrate dehydrogenase - MDH malate dehydrogenase - PAH polycyclic aromatic hydrocarbons  相似文献   

13.
In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure–activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs). In vivo using the androgen-dependent LAPC-4 prostate cancer xenograft model, we demonstrated for the first time that 5 is more efficacious than the 17-lyase inhibitor 3 (abiraterone)/4 (abiraterone acetate) that is currently in phase III clinical trials. In our desire to optimize the potency of 5, compounds 6 (3ξ-fluoro-) and 9 (3β-sulfamate-) designed to increase the stability and oral bioavailability of 5, respectively were evaluated in vivo. We showed, that on equimolar basis, compound 6 was ∼2-fold more efficacious versus LAPC-4 xenografts than 5, but the toxicity observed with 6 is of concern. These studies further demonstrate the efficacy of 5 in a clinically relevant prostate cancer model and justify its current clinical development as a potential treatment of prostate cancer.  相似文献   

14.
Polymorphisms of the methyl-CpG binding domain 1 (MBD1) gene may influence MBD1 activity on gene expression profiles, thereby modulating individual susceptibility to lung cancer. To test this hypothesis, we investigated the associations of four MBD1 polymorphisms and lung cancer risk in a Chinese population. Single locus analysis revealed significant associations between two polymorphisms (rs125555 and rs140689) and lung cancer risk (p=0.011 and p=0.005, respectively). Since the two polymorphisms were in linkage disequilibrium, further haplotype analyses were performed and revealed a significant association with lung cancer (global test p-value=0.0041). Our results suggested that MBD1 polymorphisms might be involved in the development of lung cancer. Validation of these findings in larger studies of other populations is needed.  相似文献   

15.
Expression of cytochrome P450-1A1 (CYP1A1) is suppressed under physiologic conditions but is induced (a) by polycyclic aromatic hydrocarbons (PAHs) which can be metabolized by CYP1A1 to carcinogens, and (b) in majority of breast cancers. Hence, phytochemicals or dietary flavonoids, if identified as CYP1A1 inhibitors, may help in preventing PAH-mediated carcinogenesis and breast cancer. Herein, we have investigated the cancer chemopreventive potential of a flavonoid-rich Indian medicinal plant, Pongamia pinnata (L.) Pierre. Methanolic extract of its seeds inhibits CYP1A1 in CYP1A1-overexpressing normal human HEK293 cells, with IC50 of 0.6?µg/mL. Its secondary metabolites, the furanoflavonoids pongapin/lanceolatin B, inhibit CYP1A1 with IC50 of 20?nM. Although the furanochalcone pongamol inhibits CYP1A1 with IC50 of only 4.4?µM, a semisynthetic pyrazole-derivative P5b, has ~10-fold improved potency (IC50, 0.49?μM). Pongapin/lanceolatin B and the methanolic extract of P. pinnata seeds protect CYP1A1-overexpressing HEK293 cells from B[a]P-mediated toxicity. Remarkably, they also block the cell cycle of CYP1A1-overexpressing MCF-7 breast cancer cells, at the G0-G1 phase, repress cyclin D1 levels and induce cellular-senescence. Molecular modeling studies demonstrate the interaction pattern of pongapin/lanceolatin B with CYP1A1. The results strongly indicate the potential of methanolic seed-extract and pongapin/lanceolatin B for further development as cancer chemopreventive agents.  相似文献   

16.
Gene–environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene–gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene–gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene–gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9–8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5–15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   

17.
Many studies have examined the association between the CYP2E1 Rsa Ι/Pst Ι (rs3813867) polymorphism gene polymorphisms and lung cancer risk in various populations, but their results have been inconsistent. The PubMed and CNKI database was searched for case–control studies published up to October 2013. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. In this meta‐analysis, we assessed 23 published studies involving comprising 4727 lung cancer cases and 6220 controls of the association between CYP2E1 Rsa Ι/Pst Ι polymorphism and lung cancer risk. For the homozygote c2/c2 and c2 allele carriers (c1/c2 + c2/c2), the pooled ORs for all studies were 0.73(95% CI = 0.62–0.84; P = 0.005 for heterogeneity) and 0.84 (95% CI = 0.77–0.92; P = 0.001 for heterogeneity) when compared with the homozygous wild‐type genotype (c1/c1). In the stratified analysis by ethnicity, the same significantly risks were found among Asians and mixed population for both the c2 allele carriers and homozygote c2/c2. However, no significant associations were found in Caucasian population all genetic models. This updated meta‐analysis suggests that CYP2E1 Rsa Ι/Pst Ι c2 allele is a decreased risk factor for the developing lung cancer among Asians and mixed population.  相似文献   

18.
The human cytochrome CYP2A13, which is mainly expressed in the respiratory tract, has been shown to be highly efficient in vitro in the metabolism of tobacco-smoke carcinogens and procarcinogens such as 4-methylnitroso-1-(3-pyridyl)-1-butanone (NNK). In order to investigate the extent of CYP2A13 genetic polymorphism in a French Caucasian population of 102 individuals, a screening for sequence variations in the 5'-untranslated and protein encoding regions of its gene was performed using a polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) strategy. Six polymorphisms in the coding region were identified, including two rare missense mutations (C474G or Asp158Glu, G967T or Val323Leu) and one nonsense mutation (Arg101Stop). This deleterious mutation, the most frequent (5%) in our population, presumably encodes a severely truncated protein. The influence of the nonsense mutation in lung cancer susceptibility was examined by PCR-SSCP using peripheral blood DNA from 204 cases of lung cancer and 201 controls. The CYP2A13*7 allele, which harbours the C301T mutation, was present in 2.0% of controls and 3.4% of cases. However, multivariate analysis showed an elevated risk for small cell lung cancer in subjects heterozygous for the null allele (odds ratio OR=9.9; 95% confidence interval CI=1.9-52.2). This increased risk was not linked to other histological types of lung cancer.  相似文献   

19.
MCF-7 human breast cancer cells, selected for resistance to adriamycin (AdrR), exhibit the phenotype of multidrug resistance (MDR). Previous studies have shown that resistance in AdrR MCF-7 cells is associated with several biochemical changes that are similar to those induced in rat hyperplastic nodules, preneoplastic liver lesions which display broad spectrum resistance to carcinogens and hepatotoxins. In this report, we show that these changes in the AdrR MCF-7 cells are also associated with the development of cross-resistance to the procarcinogen benzo(a)pyrene (BP) and are associated with a marked defect in the conversion of BP to its cytotoxic, carcinogenic metabolites by AdrR cells. Since aryl hydrocarbon hydroxylase is the principle enzyme activity which converts benzo(a)pyrene to toxic hydroxylated forms, the regulation of cytochrome P-450IA1 expression, the gene encoding this enzyme activity in MCF-7 cells, was examined. Incubation with 100 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 24 h results in a marked increase in aryl hydrocarbon hydroxylase activity in wild type (WT) but not AdrR MCF-7 cells. The alteration in aryl hydrocarbon hydroxylase expression in the AdrR cells is not overcome by incubation either with higher concentrations of TCDD (1 microM) or for longer periods of time (4 days). Northern blot analysis indicates that this defect in AdrR MCF-7 cells involves a regulatory defect at the level of P-450IA1 RNA. Following transfection of a construct containing the normal mouse P-450IA1 promoter fused to a reporter gene (bacterial chloramphenicol acetyltransferase) into WT and AdrR MCF-7 cells, TCDD induced chloramphenicol acetyltransferase activity in WT MCF-7 cells only. Furthermore, TCDD also induces both DT-diaphorase and UDP-glucuronyltransferase activities in WT, but not AdrR cells. These data suggest that the defect in the AdrR MCF-7 cells is not due to a structural P-450IA1 gene mutation, but rather involves a product regulating the polycyclic hydrocarbon-inducible expression of several drug-metabolizing enzyme activities. This defect in the AdrR MCF-7 cells is also associated with the development of resistance to ellipticine, an anticancer agent which is converted to more toxic hydroxylated species by aryl hydrocarbon hydroxylase or a similar mixed function oxidase. The WT and AdrR MCF-7 cells represent a useful model to study the regulation of the P-450IA1 gene in human cells.  相似文献   

20.
ObjectiveThis research was to establish a mitochondrial-related Drp1 gene and a lung cancer-related Erbb4 gene to participate in the regulatory network of lung cancer cell apoptosis, and to provide theoretical support for mitochondria to participate in tumor regulation.MethodThe GO and KEGG methods were used to construct the regulatory networks of lung cancer related Drp1 and Erbb4 proteins that involved in the apoptosis of tumor cells, and to combine with the Bayesian network theory to screen out the largest possible action path acting on this network; The information about Drp1 in Oncomine database was collected, and the data in current database were analyzed twice. The role of Drp1 in lung cancer was meta-analyzed.ResultA regulatory network of Drp1 and Erbb4 involved in the apoptosis of tumor cells was successfully constructed; the optimal pathway was optimized using Bayesian theory; a total of 446 different types of research results were collected in the Oncomine database, of which there were 18 studies with statistical differences in Drp1 expression, 13 studies with increased Drp1’s expression, and 5 studies with decreased expression. Compared with the control group, Drp1 was expressed in lung cancer tissues highly (P < 0.05).ConclusionEstablishment and optimization of mitochondrial-related Drp1 and tumor-related Erbb4 genes involved in the regulation of apoptosis of cancer cells. It was proposed that Drp1 was expressed in lung cancer tissues highly through in-depth excavation of tumor-associated gene information in the Oncomine gene chip database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号