首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic corticotropin-releasing factor (CRF) stimulates ACTH secretion in the clonal mouse pituitary cell strain AtT20/D16v (D16) in a dose-dependent manner with a half-maximal effect at 2×10?9M. A single dose of 5×10?9M CRF maximally stimulates the rate of ACTH secretion during the initial two hrs of treatment. During the period of maximal CRF stimulation intracellular hormone concentration declines progressively to a nadir at 4 hrs. During the ensuing 24 hrs of incubation intracellular hormone levels in CRF-stimulated cells increase gradually toward control values. Somatostatin (SRIF) inhibits the secretory response to CRF. This action of SRIF is dose-dependent with a half-maximal effect at 1×10?9M and results in decreased maximal ACTH secretion with little effect on the ED50 for CRF.  相似文献   

2.
The effect of somatostatin (SRIF) on norepinephrine (NE) release from the brain tissue was determined on the superfused rat cerebral cortex slices preloaded with 3HNE. SRIF (0.38 μM–1.53 μM) was found to stimulate dose-dependently tritium (3H) overflow evoked electrically by 30%—116% although SRIF did not affect on the spontaneous 3H overflow. SRIF at the concentrations which exhibited the stimulatory effect inhibited scarecely the uptake of 3HNE by cortex slices, while the reference drug, cocaine (50 μM, 10 μM) markedly depressed the uptake. The stimulatory effect of SRIF was not reduced by phentolamine (3.14 μM), α-adrenoceptor blocker, which increased the evoked 3H overflow from the slices itself. These results suggest that SRIF does not produce its stimulatory effect by inhibiting the NE reuptake mechanisms or by interacting with the presynaptic α-adrenoceptors. Elevating of Ca2+ concentrations from 0.75 mM to 2.25 mM in the superfusion fluid reduced the stimulatory effect of SRIF. It is possible that SRIF stimulates NE release by facilitating the availability of Ca2+ for the release mechanisms.  相似文献   

3.
The release of Met-enkephalin immunoreactive material (ME-IR) from rat spinal slices was measured in vitro. This release increased about 4 fold in response to the addition of K+ ions. K+-evoked release of ME-IR was Ca++ dependent. Veratridine, a depolarizing agent, also stimulated the release of ME-IR. Veratridine-induced ME-IR release was completely prevented by tetrodotoxin (TTX), a Na+ channel blocker. Somatostatin (SRIF) inhibited both basal and K+-evoked release of ME-IR at 10?7 M. Substance P had a similar effect although higher concentrations were needed. γ-Aminobutyric acid (GABA) and neurotensin (NT) did not affect the basal release but slightly decreased K+-evoked release at 10?5 M. Serotonin (5-HT) and noradrenaline (NA), did not affect ME-IR release. These results suggest that some of the neuropeptides present in the spinal cord, especially SP and SRIF, may be potent modulators of ME-IR release at the spinal level.  相似文献   

4.
Xin Wen 《Autophagy》2020,16(2):193-194
ABSTRACT

Xenophagy, a unique type of selective macroautophagy/autophagy, targets invading pathogens as part of the host immune response. In order to survive within the host, bacteria have established various self-defense mechanisms. In a recent paper from Feng Shao’s lab, the Salmonella effector protein SopF has been demonstrated to block xenophagy by interrupting the vacuolar type H+-translocating (v-) ATPase-ATG16L1 axis, which is important for antibacterial autophagy initiation. SopF can specifically ADP-ribosylate Gln124 on ATP6V0C, a v-ATPase component, thus influencing recruitment of ATG16L1 onto the bacteria-containing vacuole within the host cytosol.

Abbreviations: ATG: autophagy-related; S. Typhimurium: Salmonella enterica serovar Typhimurium; T3SS: type III secretion system  相似文献   

5.
In the rat, intracerebroventricular injection of synthetic ACTH (ACTH1–24, ACTH1–16) elevated plasma corticosterone levels and induced the display of excessive grooming behavior. The grooming response could be elicited in hypophysectomized rats without concommittant elevation of plasma corticosterone. In intact rats subcutaneous injection of ACTH1–24 and not of ACTH1–16-NH2 stimulated the release of adrenal corticosteroids, whereas no excessive grooming was observed. In contrast to the reduced effectiveness of a second icv injection of ACTH in inducing the behavioral response, no single-dose tolerance was observed for the effect of icv ACTH on the pituitary-adrenal system. Therefore it was concluded that two different central mechanisms underly the observed responses to the icv applied ACTH.  相似文献   

6.
Abstract

An important step in megakaryocyte maturation is the appropriate assembly of at least two distinct subsets of α-granules. The mechanism that sorts the α-granule components into distinct structures and mediates their release in response to specific stimuli is now emerging. P-selectin and von Willebrand factor are two proteins present in the α-granules that recognize P-selectin glycoprotein ligand on neutrophils and collagen in the subendothelial matrix. These proteins may play an important role in determining the differential release of the α-granule contents in response to external stimuli. If P-selectin and von Willebrand factor are localized in the same or different α-granules is not known. To clarify this question, we analyzed by immunoelectron microscopy the localization of von Willebrand factor and P-selectin during the maturation of wild-type and Gata1low megakaryocytes induced in vivo by treating animals with thrombopoietin. Gata1low is a hypomorphic mutation that blocks megakaryocyte maturation, reduces the levels of von Willebrand factor expression and displaces P-selectin on the demarcation membrane system. The maturation block induced by this mutation is partially rescued by treatment in vivo with thrombopoietin. In immature megakaryocytes, both wild-type and Gata1low, the two receptors were co-localized in the same cytoplasmic structures. By contrast, the two proteins were segregated to separate α-granule subsets as the megakaryocytes matured. These observations support the hypothesis that P-selectin and von Willebrand factor may ensure differential release of the α-granule content in response to external stimuli.  相似文献   

7.
Clinical applications of somatostatin   总被引:4,自引:0,他引:4  
Because of its wide distribution in the organism, natural somatostatin (SRIF) demonstrates an ample spectrum of actions, involving mainly the central neuroendocrine system and the enteropancreatic area. In the former, this peptide may find its field of application in conditions characterized by excessive GH, TSH or ACTH secretion, depending on the central or peripheral cause of the inappropriate hormone control. The inhibitory effect of SRIF on gastrointestinal and pancreatic hormones may be useful in the management of tumors originating in this system and also in the treatment of inflammatory processes such as pancreatitis, in malignant diarrhea, and in gastrointestinal bleeding. A complex action of SRIF and its derivative on insulin release and glucose homeostasis may offer some advantages in the control of unstable diabetes. Dampening of organic functions in the upper digestive tract may also render SRIF and its analogues useful in the exploration of the gallbladder, gastric and pancreatic functions. The effect of such peptides on tissue growth and on the regulation of blood pressure are the subject of present investigations. Cytoprotection, an interesting aspect of SRIF application, is discussed elsewhere in this compendium. Finally, some comments on the possible use of SRIF as an additive to the conventional treatment of burns and sepsis close this review.  相似文献   

8.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

9.
While stress is known to impact reproductive performance, the pathways involved are not entirely understood. Corticosteroid effects on the functioning of the hypothalamus-pituitary-gonadal axis are thought to be a key aspect of stress-mediated reproductive dysfunction. A vital component of the stress response is the pituitary secretion of adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. We recently reported MC2R mRNA abundance in fish gonads leading to the hypothesis that ACTH may be directly involved in gonadal steroid modulation. Using zebrafish (Danio rerio) ovarian follicles, we tested the hypothesis that acute ACTH stimulation modulates cortisol and estradiol (E2) secretion. ACTH neither affected cortisol nor unstimulated E2 release from ovarian follicles. However, ACTH suppressed human chorionic gonadotropin (hCG)-stimulated E2 secretion in a dose-related manner, with a maximum decrease of 62% observed at 1 I.U. ACTH mL−1. This effect of ACTH on E2 release was not observed in the presence of either 8-bromo-cAMP or forskolin, suggesting that the mechanism(s) involved in steroid attenuation was upstream of adenylyl cyclase activation. Overall, our results suggest that a stress-induced rise in plasma ACTH levels may initiate a rapid down-regulation of acute stimulated E2 biosynthesis in the zebrafish ovary, underscoring a novel physiological role for this pituitary peptide in modulating reproductive activity.  相似文献   

10.
《Endocrine practice》2014,20(7):646-649
ObjectiveThe use of ovine corticotropin releasing hormone (oCRH) maximizes the diagnostic accuracy of inferior petrosal sinus sampling (IPSS) in patients with adrenocorticotropin hormone (ACTH)-dependent Cushing’s syndrome (CS). oCRH is marketed as ACTHrel and, understandably, may be confused with cosyntropin [ACTH (1-24)]. The inadvertent substitution of synthetic ACTH(1-24) for oCRH (ACTHrel) during IPSS may cause unexpected and misleading results. The aim of this report is to raise awareness of the potential confounding results created when synthetic ACTH(1-24) is mistakenly used during IPSS.MethodsWe present 3 patients treated at 3 different centers with ACTH-dependent CS in whom ACTH(1-24) was mistakenly substituted for oCRH (ACTHrel) during IPSS.ResultsIn all patients, there was an abrupt and unexpected decrease in plasma ACTH in the inferior petrosal sinus (IPS) samples after presumptive stimulation with oCRH. Re-evaluation of the patients’ pharmacy records confirmed that synthetic ACTH(1-24) had been used rather than oCRH during each procedure. Because “sandwich” immunometric assays for ACTH measure the entire pool of endogenous ACTH, the administration of synthetic ACTH(1-24) artifactually decreases the endogenous plasma ACTH(1-39) measurement by binding only to the N-terminal antibody raised against ACTH(1-17) and not to the C-terminal antibody raised against ACTH(34-39). This results in a lack of a detectable sandwich complex and explains the apparent reduction in ACTH concentration.ConclusionAn abrupt decrease in ACTH during IPSS suggests that synthetic ACTH(1-24) rather than oCRH (ACTHrel) has been administered. The labeling of oCRH as ACTHrel poses a potential patient safety problem about which endocrinologists, interventional radiologists, and pharmacists should be aware. (Endocr Pract. 2014;20: 646-649)  相似文献   

11.
1. The effect of 10 days treatment with growth hormone (GH) (l mg/kg body wt/day) and somatostatin (SRIF) (0.25 mg/kg body wt/day) subcutaneously on the activity of β-adrenoceptors in rat hypothalamic, pituitary and cerebral cortical membrane fractions was studied using [3H]dihydroalprenolol ([3H]DHA) as radioligand.2. The administration of GH significantly increased the β-adrenoceptor binding affinity and the administration of SRIF decreased the β-adrenoceptor binding capacity in the hypothalamus.3. In the pituitary the β-adrenoceptor binding affinity was significantly decreased after both hormonal applications.4. In the cerebral cortex the β-adrenoceptor binding affinity was significantly decreased after the GH treatment and increased after the SRIF treatment.5. The present study provides direct evidence for GH and SRIF effects on the activity of rat β-adrenoceptors and supports the view about the involvement of β-adrenergic mechanisms in the neurotransmitter regulation of GH secretion in the rat.  相似文献   

12.
Somatostatin‐14 (SRIF) co‐localizes with GABA in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of hippocampal activity has been proposed, although the exact contribution of each SRIF receptor (sst1–sst5) in mediating SRIF action requires some clarification. We used hippocampal slices of wild‐type and sst1 knockout (KO) mice and selective pharmacological tools to provide conclusive evidence for a role of sst1 in mediating SRIF inhibition of synaptic transmission. With single‐ and double‐label immunohistochemistry, we determined the distribution of sst1 in hippocampal slices and we quantified sst1 colocalization with SRIF. With electrophysiology, we found that sst1 activation with CH‐275 inhibited both the NMDA‐ and the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐mediated responses. Results from sst1 KO slices confirmed the specificity of CH‐275 effects; sst1 activation did not affect the inhibitory transmission which was in contrast increased by sst4 activation with L‐803,087 in both wild‐type and sst1 KO slices. The AMPA‐mediated responses were increased by L‐803,087. Functional interaction between sst1 and sst4 is suggested by the finding that their combined activation prevented the CH‐275‐induced inhibition of AMPA transmission. The involvement of pre‐synaptic mechanisms in mediating inhibitory effects of sst1 on excitatory transmission was demonstrated by the finding that CH‐275 (i) increased the paired‐pulse facilitation ratio, (ii) did not influence the AMPA depolarization in the presence of tetrodotoxin, and (iii) inhibited glutamate release induced by epileptiform treatment. We conclude that SRIF control of excitatory transmission through an action at sst1 may represent an important contribution to the regulation of hippocampal activity.  相似文献   

13.
A specific and sensitive assay for determining the binding of adrenocorticotropin (ACTH) to isolated rat adipocytes has been developed and utilized to study the effect of glucocorticoids on ACTH receptor. Measurement of the binding of tritiated ACTH (spec. act. 90 Ci/mmol) to adipocytes isolated from normal, adrenalectomized, and adrenalectomized dexamethasone-treated rats indicated that there are no differences among these three populations in either the magnitude or the affinity of the binding reaction. The binding interaction was found to be of high affinity (Kd = 5.23 + 1.92 · 10?9 M) and paralleled closely the stimulation of lipolysis (Km = 2.09 ± 0.35 · 10?9 M). About 16 300 receptors were calculated to be present per adipocyte. Hormone-induced cyclic 3′,5′-adenosine monophosphate production remained intact after adrenalectomy, thereby confirming that receptors are not lost during steroid deprivation. The lipolytic response did, however, become less sensitive to both ACTH and epinephrine following adrenalectomy. Pre-treatment of adrenalectomized rats with dexamethasone resulted in an increase in basal and hormone-stimulated levels of cyclic AMP and glycerol production to super-normal values. In adipocyte ghost preparations, ACTH and epinephrine sensitive adenylate cyclase activity was not decreased by adrenalectomy and dexamethasone administration did not result in a selective enhancement of ACTH sensitive adenylate cyclase activity. Our results indicate that glucocorticoids do not cause their permissive effects by specific regulation of the ACTH receptor on the adipocyte.  相似文献   

14.
Insertion of a crude preparation of cyclic AMP (cAMP)-dependent protein kinase inhibitor (PKI) into a cloned mouse anterior pituitary cell line (AtT-20/D16-16) blocked cAMP-mediated hormone release. This was accomplished by developing a technique to incorporate PKI into multicellular cultures. The technique involved the encapsulation of the PKI into liposomes coupled to Protein A (a bacterial protein that binds to the Fc portion of antibodies). Application of such liposomes to AtT-20 cells targeted by pre-treatment with an antiserum against neural cell adhesion molecule (a cell surface glycoprotein expressed by these cells) resulted in the attachment of the liposomes onto the cell surface followed by the delivery of the liposome content into the cells. The AtT-20 cells respond to cAMP-promoting agents such as forskolin by secreting the hormone adrenocorticotropin (ACTH). Liposomes containing PKI and coupled to protein A specifically blocked cAMP-mediated ACTH release from cells treated with anti-N-CAM antibodies. In contrast, the ACTH release response to K+ or phorbol esters does not appear to involve cAMP and was not reduced by such manipulations. The specificity of PKI to block hormone release initiated by one but not by other secretagogues directly links cAMP-dependent protein kinase with the ACTH release process but suggests that there are other mechanisms also involved in stimulus-secretion coupling in corticotrophs.  相似文献   

15.
Somatostatin   总被引:4,自引:0,他引:4  
Summary 1. Somatostatin (SRIF) exerts diverse physiological actions in the body including regulation of hormone and neurotransmitter release and neuronal firing activity. Analogs of SRIF are used clinically to treat tumors and cancers and to block the hypersecretion of growth hormone in acromegaly.2. The recent cloning of five SRIF receptor subtypes has allowed for the identification of the molecular basis of the cellular actions of SRIF. The ligand binding domains and regions involved in coupling to G proteins and cellular effector systems are being identified and the processes by which SRIF inhibits cell growth and proliferation are being established. Furthermore, subtype selective agonists have been generated which are being used to investigate the specific biological roles of each SRIF receptor subtypes.3. Such information will be useful in developing a new generation of SRIF drugs that could be employed to treat metabolic diseases, disorders of the gut, cancer and abnormalities in the central nervous system such as epilepsy and Alzheimer's disease.  相似文献   

16.
17.
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.  相似文献   

18.
19.
《Endocrine practice》2014,20(1):84-93
ObjectiveTo review and evaluate medical therapies for Cushing’s disease (CD), with an emphasis on recent clinical trial experience with pasireotide and mifepristone, and to discuss the therapeutic potential and appropriate selection of these compounds in this patient population.MethodsRecently published Phase III trial data for each compound are reviewed and assessed, and relative benefits and risks are examined and compared where possible.ResultsMifepristone and pasireotide are both potentially beneficial for CD patients but have greatly dissimilar mechanisms of action and adverse event (AE) profiles. Pasireotide acts at the level of the pituitary adenoma, reducing cortisol levels through inhibition of adrenocorticotropic hormone (ACTH) release. However, pasireotide reduces insulin secretion and incretin hormone response and is associated with significant risk for new or worsening hyperglycemia. Mifepristone ameliorates the signs and symptoms of hypercortisolemia via glucocorticoid receptor (GR2) blockade, but this approach raises serum cortisol levels and increases risk for adrenal insufficiency (AI), hypokalemia, and endometrial thickening. While response to pasireotide can be monitored via measurements of serum, urine, or late-night salivary cortisol, evaluation of response to mifepristone is solely based on changes in clinical parameters (e.g., hyperglycemia, hypertension, body weight/composition).ConclusionManagement of persistent CD is challenging, and the decision to initiate medical treatment hinges on many factors. Pasireotide may be a more attractive option for most patients due to its action at the underlying tumor and the ability to monitor biochemical responses. However, mifepristone may be more appropriate when it is necessary to avoid or minimize risk for hyperglycemiarelated complications. (Endocr Pract. 2014;20:84-93)  相似文献   

20.
Catfish pancreatic somatostatin, which contains eight additional amino acids on the amino terminus of a tetradecapeptide with considerable homology to tetradecapeptide somatostatin (SRIF), is a naturally occurring homology of the hypothalamic peptide. The purpose of these studies was to determibe the biological activity of this somatostatin homolog. Inhibition of 125I-labelled tyr1-SRIF binding to bovine pituitart plasma membranes by catfish pancreatic somatostatin was approximately 33% that of SRIF. Pancreatic somatostatin has full biological activity measured by inhibition of growth hormone release from isolated rat pituitary cells, but 0.01–0.1% the potency of SRIF. Pancreatic somatostatin at 100 ng/ml produced a 50–60% inhibition of insulin and glucagon secretion from perfused rat pancreas, while SRIF produced comparable inhibition at 10 ng/ml. This report demonstrates that a larger molecular form and natural homolog of SRIF, isolated from fish pancreas, has the same (but reduced) biological activities in rat assay systems as somatostatin originally isolated from sheep hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号