首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

2.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

3.
Two membrane fractions, one enriched in sarcoplasmic reticulum and the other enriched in sarcolemma, were isolated from the myocardium of young (3–4-months-old) and aged (24–25-months old) rats. ATP-supported Ca2+ binding and accumulating activities as well as (Mg2+ + Ca2+)-ATPase activities of these membrane fractions were studied in an effort to determine the influence of age on the Ca2+ pump function of the two myocardial membrane systems. Sarcoplasmic reticulum from aged hearts showed significantly reduced (approx. 50%) rates of ATP-supported (oxalate-facilitated) Ca2+ accumulation compared to sarcoplasmic reticulum from young hearts; the amount of Ca2+ accumulated by this membrane of aged heart at steady state was also lower. On the other hand, sarcolemma from aged hearts displayed 2-fold higher rates of ATP-supported Ca2+ accumulation compared to sarcolemma from young hearts; at steady state, sarcolemma from aged hearts accumulated significantly higher amounts of Ca2+ than did sarcolemma from young hearts. Similar age-related differences were also observed in the ATP-dependent Ca2+ binding activities of the two membranes, determined in the absence of oxalate. The divergent age-associated changes in Ca2+ binding and accumulating activities of sarcoplasmic reticulum and sarcolemma were seen at varying Ca2+ concentrations (0.24–39.1 μM).With either membrane, kinetic analysis showed 2-fold age-related differences in the V values for ATP-supported Ca2+ accumulation (V (nmol Ca2+/mg protein per min): sarcoplasmic reticulum — young, 119 ± 8; aged, 59 ± 5; sarcolemma — young, 11 ± 2; aged, 21 ± 3); the concentrations of Ca2+ required for half-maximal velocities did not differ significantly with age (K0.5 for Ca2+ (μM): sarcoplasmic reticulum — young, 2.5 ± 0.20; aged, 2.9 ± 0.25; sarcolemma — yount, 2.7 ± 0.25; aged, 3.2 ± 0.30). Kinetic parameters of ATP-dependent Ca2+ binding also indicated that the velocity of Ca2+ binding but not the concentration of Ca2+ required for half-maximal binding was altered due to aging. At identical Ca2+ concentrations, the combined Ca2+ accumulating activity of sarcoplasmic reticulum and sarcolemma from aged hearts was significantly lower (38–47%) than the combined Ca2+ accumulating activity of the two membranes from young hearts. No significant age-related differences were observed in the ATP-independent (passive) Ca2+ binding (or accumulation) by sarcoplasmic reticulum and sarcolemma, the (Mg2+ + Ca2+)-ATPase activities of these membranes, their polypeptide composition or relative purity. These results indicate that differential alterations occur in the ATP-supported Ca2+ pump activities of sarcoplasmic reticulum and sarcolemma in aging myocardium and such alterations may be due to age-associated changes in the efficacy of coupling ATP hydrolysis to Ca2+ transport. Further, the age-related increment in the Ca2+ pump activity of sarcolemma is inadequate to fully compensate for the diminished Ca2+ pump activity of sarcoplasmic reticulum. It is, therefore, suggested that deterioration of the Ca2+ pump function of sarcoplasmic reticulum may contribute to the increased relaxation time observed in aging heart.  相似文献   

4.
Changes in protein and fatty acid compositions of flounder sarcoplasmic reticulum during NADH plus ascorbate-dependent lipid peroxidationin vitro were related to the ability of the sarcoplasmic reticulum to sequester Ca+2. Progressive accumulation of high-molecular-weight protein components occurred concomitantly with loss of Ca+2-sequestering activity. Part of this polymerized protein may be the dimer or trimer of Ca+2, Mg+2-ATPase. Loss in Ca+2, Mg+2-ATPase protein could account for over 60% of the polymerized protein. Rate of loss of polyunsaturated fatty acids was C22:6>C20:4>C20:5>C22:5. Loss of polyunsaturated fatty acids and accumulation of thiobarbituric acid-reactive substances occurred concomitantly with protein polymerization.  相似文献   

5.
The two major ATPase activities of intact and leaky cardiac membrane vesicles (microsomes) were characterized with respect to ionic activation requirements. The predominant ATPase activity of intact vesicles was (K+ + Ca2+)-ATPase, an enzymic activity localized to sarcoplasmic reticulum, whereas the predominant ATPase activity of leaky, sodium dodecyl sulfate-pretreated vesicles was (Na+ + K+)-ATPase, an enzymic activity localized to sarcolemma. The (K+ + Ca2+)-ATPase activity was stimulated 4- to 5-fold by 100 mM K+ in the presence of 50 μM Ca2+. Phosphorylation of the (K+ + Ca2+)-ATPase of intact vesicles with [γ-32P]ATP was Ca2+ dependent, and monovalent cations including K+ increased the level of [32P]phosphoprotein by up to 50% when phosphorylation was measured at 5°C. After the intact vesicles were treated with SDS (0.30 mg/ml), (K+ + Ca2+)-ATPase was inactivated, as was Ca2+-dependent 32P incorporation. The monovalent cation-stimulated ATPase activity of the particulate residue (SDS-extracted membrane vesicles) displayed the usual characteristics of ouabain-sensitive (Na+ + K+)-ATPase and the activity was increased 9- to 14-fold over the small amount of patent (Na+ + K+)-ATPase activity of intact membrane vesicles. 32P incorporation by the (Na+ + K+)-ATPase of SDS-extracted vesicles was Na+ dependent, and Na+-stimulated incorporation was increased 7- to 9-fold over that of intact vesicles.Slab gel polyacrylamide electrophoresis of both intact and SDS-extracted crude vesicle preparations revealed at least 40 distinct Coomassie Blue-positive protein bands and provided evidence for a possible heterogeneous membrane origin of the vesicles. Periodic acid-Schiff staining of the gels revealed at least two major glycoproteins. Simultaneous electrophoresis of the 32P-intermediates of the (K+ + Ca2+)-ATPase and the (Na+ + K+)-ATPase in the same gels did not resolve the two enzymes clearly. With sucrose gradient centrifugation of intact membrane vesicles, it was possible to physically resolve the two ATPase activities. Latent (Na+ + K+)-ATPase activity (unmasked by exposing the various fractions to SDS) was found in the higher regions of the gradient, whereas (K+ + Ca2+)-ATPase activity was primarily in the denser regions. A reasonable interpretation of the data is that cardiac microsomes consist of membrane vesicles derived both from sarcolemma and sarcoplasmic reticulum. (Na+ + K+)-ATPase is localized to intact vesicles of sarcolemma but is mainly latent, whereas (K+ + Ca2+)-ATPase is mostly patent and is localized to vesicles of sarcoplasmic reticulum.  相似文献   

6.
A multiple measurement system for assessing sarcoplasmic reticulum (SR) Ca++-ATPase activity and Ca++-uptake was used to examine the effects of SR fractionation and quick freezing on rat white (WG) and red (RG) gastrocnemius muscle.In vitro measurements were performed on whole muscle homogenates (HOM) and crude microsomal fractions (CM) enriched in SR vesicles before and after quick freezing in liquid nitrogen. Isolation of the CM fraction resulted in protein yields of 0.96±0.1 and 0.99±0.1 mg/g in WG and RG, respectively. The percent Ca++-ATPase recovery for CM compared to HOM was 14.5% (WG) and 10.1% (RG). SR Ca++-activated Ca++-ATPase activity was not affected by quick freezing of HOM or CM, but basal ATPase was reduced (P<0.05) in frozen HOM (5.12±0.18–3.98±0.20 mole/g tissue/min in WG and from 5.39±0.20–4.48±0.24 mole/g tissue/min in RG). Ca++-uptake was measured at a range of physiological free [Ca++] using the Ca++ fluorescent dye Indo-1. Maximum Ca++-uptake rates when corrected for initial [Ca++]f were not altered in HOM or CM by quick freezing but uptake between 300 and 400nM free Ca++ was reduced (P<0.05) in quick frozen HOM (1.30±0.1–0.66±0.1 mole/g tissue/min in WG and 1.04±0.2–0.60±0.1 mole/g tissue/min in RG). Linear correlations between Ca++-uptake and Ca++-ATPase activity measured in the presence of the Ca++ ionophore A23187 were r=+0.25, (P<0.05) and r=+0.74 (P<0.05) in HOM and CM preparations, respectively, and were not altered by freezing. The linear relationships between HOM and CM maximum Ca++-uptake (r=+0.44, P<0.05) and between HOM and CM Ca++-ATPase activity (r=+0.34, P<0.05) were also not altered by tissue freezing. These data suggest that alterations in maximal SR Ca++-uptake function and maximal Ca++-ATPase activity may be measured in both HOM and CM fractions following freezing and short term storage. (Mol Cell Biochem139, 41–52, 1994)  相似文献   

7.
Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose gradients (27-32-34-38-45%, wt/wt). All the fractions were characterized in terms of calcium content, Ca2+/Mg2+-ATPase activity, and radioligand binding of [3H]-PN 200-110 and [3H]ryanodine, specific to dihydropyridine-sensitive calcium channels and ryanodine receptors, respectively. Gradient fractions of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude microsomal fractions prior to gradient loading (25%). Second, heavy fractions from the sarcoplasmic reticulum were modified, and part (52%) of the R3 fraction was shifted to the R4 fraction, which appeared as a thick, clotted band. Quantification of [3H]-PN 200-110 and [3H]-ryanodine binding revealed co-migration of terminal cisternae and t-tubules from R3 to R4, indicating the presence of triads. This density change may be associated with calcium overload of the sarcoplasmic reticulum, since total calcium rose three- to fourfold in stimulated muscle homogenates. These changes correlate well with ultrastructural damage to longitudinal sarcoplasmic reticulum and swelling of t-tubules revealed by electron microscopy. The ultrastructural changes observed here reflect exercise-induced damage of membrane systems that might severely compromise muscle function. Since this process is reversible, we suggest that it may be part of a physiological response to fatigue.  相似文献   

8.
A procedure was developed for the isolation of cardiac sarcolemmal vesicles. These vesicles are enriched about ten-fold (with respect to the tissue homogenate) in K+-stimulated p-nitrophenylphosphatase, (Na+ + K+)-ATPase, 5'-nucleotidase activities and sialic acid content, all of which are believed to be components of the sarcolemma. The sarcolemma of tissue culture cardiac cells were radioiodinated and the distribution of this radioiodine paralleled the distribution of the other membrane markers above. There was very little contamination of the sarcolemmal fraction by sarcoplasmic reticulum (as judged by Ca2+-ATPase and glucose-6-phosphatase activities) or inner mitochondrial membranes (as judged by succinate dehydrogenase activity). There may, however, be some contamination by outer mitochondrial membranes (as judged by monoamine oxidase and rotenone-insensitive NADH cytochrome c reductase activities) which have rarely been monitored in cardiac sarcolemmal preparations. The purity of this preparation is good when compared with other cardiac sarcolemmal preparations. This preparation should be very useful in studying the roles of the cardiac sarcolemma (e.g. in excitation contraction coupling and Ca2+ binding).  相似文献   

9.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (ww) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

10.
Release of Ca2+ from the (Ca2+ + Mg2+)-ATPase into the interior of intact sarcoplasmic reticulum vesicles was measured using arsenazo III, a metallochromic indicator of Ca2+. Arsenazo III was placed inside the sarcoplasmic reticulum vesicles by making the vesicles transiently leaky with an osmotic gradient in the presence of arsenazo III. External arsenazo III was then removed by centrifugation. Addition of ATP to the (Ca2+ + Mg2+)-ATPase in the presence of Ca2+ causes the rapid phosphorylation of the enzyme at which time the bound Ca2+ becomes inaccessible to external EGTA. The release of Ca2+ from the (Ca2+ + Mg2+)-ATPase to the interior of the vesicle measured with intravesicular arsenazo III was much slower indicating that there is an occluded from the Ca2+-binding site which precedes the release of Ca2+ into the vesicle. The rate of Ca2+ accumulation by sarcoplasmic reticulum vesicles is increased by K+ (5–100 mM) and ATP (50–1000 μM) but the initial rate of Ca2+ translocation measured after the simultaneous addition of ATP and EGTA to vesicles that were preincubated in Ca2+ was not influenced by these concentrations of K+ and ATP.  相似文献   

11.
Summary A microsomal fraction consisting of membranes of transverse tubule origin has been purified by a modification of the calcium-loading procedure initially described by Rosemblatt et al. (J Biol Chem 256:8140–8, 1981). Enzymatic analysis of this fraction shows an enrichment of the vesicles in the Mg++ATPase (basal) activity characteristic of the T-tubules and an absent or very low Ca++-dependant ATPase activity. Stereological analysis of freeze fracture replica of the membranes in the purified fraction indicates that they have a very low density of particles in their P faces and lack the structural manifestation of the caveolae typical of the sarcolemma. Immunological analysis performed with monoclonal antibodies prepared against purified T-tubule and sarcoplasmic reticulum membranes define some T-tubule specific antigens and confirm the morphological and biochemical data regarding the origin and purity of the Ttubule preparation.  相似文献   

12.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (w/w) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

13.
Vanadate inhibits the Ca++-ATPase of sarcoplasmic reticulum from pig heart half maximally at about 10?5 M. Mg++ promotes this inhibition by vanadate whereas increasing Ca++-concentrations protect the enzyme against vanadate inhibition. Keeping the ratio Mg++ATP constant there was no influence of ATP on the vanadate inhibition at concentrations up to 5 × 10?3 M ATP. Whenever the ratio Mg++ATP was higher than 1:1 the inhibitory effect of vanadate on the Ca++-ATPase was increased.  相似文献   

14.
An ATPase, activated by Na+ plus K+ in the presence of Mg++ and inhibited by ouabain, has been obtained from rat skeletal muscle. Unlike ATPase's with similar properties obtained from other preparations, this ATPase was found only in the fraction containing fragmented sarcoplasmic reticulum. It is suggested that in rat skeletal muscle this ATPase may reside in sarcoplasmic reticulum and not in sarcolemma. This ATPase differed in its pH optimum and in its cation sensitivity from that of rat brain and from that of human muscle reported by Samaha and Gergely (1965, 1966). Because insulin accelerates Na+ efflux from muscle, efforts were made to determine whether or not this effect of insulin could be attributed to increased Na+ + K+-activated ATPase activity. Insulin, administered either in vivo or in vitro, had no demonstrable effect on the enzyme system, nor did it protect against inhibition by ouabain.  相似文献   

15.
Fractionation of sarcoplasmic reticulum vesicles from rabbit skeletal muscle was performed by solubilization of the vesicles in the presence of deoxycholate, followed by sucrose density gradient centrifugation and gel filtration chromatography. This procedure permitted the isolation of essentially pure Ca2+-ATPase; this enzyme showed ATPase as well as acylphosphatase activity, both activities being clearly enhanced by deoxycholate. The acylphosphatase activity of the purified Ca2+-ATPase was characterized with regard to some kinetic properties, such as pH, Mg2+, Ca2+, and deoxycholate dependence, and substrate affinity, determined in the presence of acetylphosphate, succinylphosphate, carbamylphosphate, and benzoylphosphate; in addition, the stability of both activities was checked in time-course experiments. The main similarities between the two activities, such as the Mg2+ requirement, the deoxycholate activation, and the pH dependence, together with the competitive inhibition of the benzoylphosphatase activity by ATP, the inhibition of both activities by tris(bathophenanthroline)-Fe2+, and the relief of this inhibitory effect by carbonylcyanide-4-trifluoromethoxyphenyl hydrazone support the hypothesis that acylphosphatase and ATPase activities of sarcoplasmic reticulum vesicles reside in the same active site of the enzyme. With regard to possible relationships between acylphosphatase activity of the purified Ca2+-ATPase and “soluble” acylphosphatase present in the 100,000g supernatant fraction, comparison of some kinetic and structural parameters indicate that these two activities are supported by quite different enzymes.  相似文献   

16.
Binding of cations by microsomes from rabbit skeletal muscle   总被引:6,自引:0,他引:6  
Fragmented sarcoplasmic reticulum and transverse tubular system, as isolated in the microsomal fraction from rabbit skeletal muscle, bind H+, Na+, K+, Ca++, Mg++, and Zn++. The binding depends on a cation exchange type of interaction between these cations and the chemical components of the membranous systems of the muscle cell. The monovalent and divalent cations exchange quantitatively for each other at the binding sites on an equivalent basis. Scatchard plots of the H+ binding data indicate that the binding groups can be resolved into two major components in terms of their pK values. Component 1 has a pK value of 6.6 and a capacity for H+ binding of 2.2 meq/g N . The second component has a much higher H+ binding capacity (7–8 meq/g N ), but its pK value, 3.4, is non-physiological. The binding of cations other than H+ at a neutral pH occurs at the binding sites making up component 1. The order of affinity of the cations for the microsome binding sites is H+ » Zn++ > Ca++ > Mg++ » Na+ = K+ as reflected by the apparent respective pKM values: 6.6, 5.2, 4.7, 4.2, 1.3, 1.3. Caffeine, which causes contracture and potentiates the twitch of skeletal muscle, does not interfere with the binding of Ca++ by the microsomes at neutral pH.  相似文献   

17.
A new technique for isolating fragmented plasma membranes from skeletal muscle has been developed that is based on gentle mechanical disruption of selected homogenate fractions. (Na+ + K+)-stimulated, Mg2+-dependent ATPase was used as an enzymatic marker for the plasma membrane, Ca2+-stimulated, Mg2+-dependent ATPase as a marker for sarcoplasmic reticulum, and succinate dehydrogenase for mitochondria. Cell Cell segments in an amber low-speed (800 × g) pellet of a frog muscle homogenate were disrupted by repeated gentle shearing with a Polytron homogenizer. Sarcoplasmic reticulum was released into the low-speed supernatant, whereas most of the plasma membrane marker remained in a white, fluffy layer of the sediment, which contained sarcolemma and myofibrils. Additional gentle shearing of the white low-speed sediment extracted plasma membranes in a form that required centrifugation at 100 000 × g for pelleting. This pellet, the fragmented plasma membrane fraction, had a relatively high specific activity of (Na+ + K+)-stimulated ATPase compared with the other fractions, but it had essentially no Ca2+-stimulated ATPase activity and only a small percentage of the succinate dehydrogenase activity of the homogenate.Experimental evidence suggests that the fragmented plasma membrane fraction is derived from delicate transverse tubules rather than from the thicker, basement membrane-coated sarcolemmal sheath of muscle cells. Electron microscopy showed small vesicles lined by a single thin membrane. Hydroxyproline, a characteristic constituent of collagen and basement membrane, could not be detected in this fraction.  相似文献   

18.
Crude homogenates of rat cardiac muscle were fractionated in order to examine the subcellular location of adenylate cyclase in this tissue. The fractionation procedure employed differential centrifugation of homonized material, followed by collagenase treatment, centrifugation on a discontinuous sucrose density gradient and extraction with 1 M KCl. The particulate fraction obtained by this procedure contained a high specific activity and yield of adenylate cyclase, moderate levels of mitochondria and low levels of sarcoplasmic reticulum and contractile protein as judged by marker enzyme activities. Adenylate cyclase was purified 20-fold with a 33% yield from the crude homogenate, while mitochondrial, sarcoplasmic reticulum and contractile protein yields were 5, 0.4 and 0.7% respectively. The membrane fractions prepared in this manner were examined by sodium dodecyl sulfate · gel electrophoresis.Adenylate cyclase copurified with ouabain-sensitive (Na+ + K+)-ATPase, a plasma membrane marker enzyme, and not with Ca2+-accumulating activity, which is associated with the sarcoplasmic reticulum. The distribution of marker enzyme activities indicates that heart adenylate cyclase is not located in the sarcoplasmic reticulum but is localized predominantly, if not exclusively, in the plasma membrane.  相似文献   

19.
Calcium efflux from skeletal muscle fragmented sarcoplasmic reticulum was studied using a dilution technique and Millipore filtration. In the absence of Mg++ and external Ca++, addition of lmM adenosine triphosphate to the suspension resulted in an immediate loss of 26–55% of total vesicular calcium. The amount of calcium released was calculated to be sufficient to effect muscle contraction. After separation of the sarcoplasmic reticulum into light, intermediate and heavy vesicles, the light and heavy fractions were found to be only weakly responsive to adenosine triphosphate, whereas the intermediate fraction lost nearly half of its calcium. The significance of these results with respect to excitation-contraction coupling in muscle is discussed.  相似文献   

20.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号