首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
The GABAA receptors are the major inhibitory neurotransmitter receptors in mammalian brain. Each isoform consists of five homologous or identical subunits surrounding a central chloride ion-selective channel gated by GABA. How many isoforms of the receptor exist is far from clear. GABAA receptors located in the postsynaptic membrane mediate neuronal inhibition that occurs in the millisecond time range; those located in the extrasynaptic membrane respond to ambient GABA and confer long-term inhibition. GABAA receptors are responsive to a wide variety of drugs, e.g. benzodiazepines, which are often used for their sedative/hypnotic and anxiolytic effects.  相似文献   

2.
GABAA receptors are members of the ligand-gated ion channel superfamily that mediate inhibitory neurotransmission in the central nervous system. They are thought to be composed of 2 alpha (α), 2 beta (β) subunits and one other such as a gamma (γ) or delta (δ) subunit. The potency of GABA is influenced by the subunit composition. However, there are no reported systematic studies that evaluate GABA potency on a comprehensive number of subunit combinations expressed in Xenopus oocytes, despite the wide use of this heterologous expression system in structure–function studies and drug discovery. Thus, the aim of this study was to conduct a systematic characterization of the potency of GABA at 43 human recombinant GABAA receptor combinations expressed in Xenopus oocytes using the two-electrode voltage clamp technique. The results show that the α-subunits and to a lesser extent, the β-subunits influence GABA potency. Of the binary and ternary combinations with and without the γ2L subunit, the α6/γ2L-containing receptors were the most sensitive to GABA, while the β2- or β3-subunit conferred higher sensitivity to GABA than receptors containing the β1-subunit with the exception of the α2β1γ2L and α6β1γ2L subtypes. Of the δ-subunit containing GABAA receptors, α4/δ-containing GABAA receptors displayed highest GABA sensitivity, with mid-nanomolar concentrations activating α4β1δ and α4β3δ receptors. At α4β2δ, GABA had low micromolar activity.  相似文献   

3.
4.
In the hippocampus, GABA inhibition tunes network oscillations and shapes synchronous activity during spatial learning and memory coding. Once released from the presynapse, GABA primarily binds to ionotropic GABAA receptors (GABAARs), which are heteropentamers combinatorially assembled from nineteen known subunits to induce Cl- currents postsynaptically. Dissecting GABAAR subtype specificities in neurobiology is daunting because of differences in their developmental dynamics, regional distribution and subcellular compartmentalization. Here, we review recent data to show that the combination of single-cell mRNA-seq and neuroanatomy can reveal unprecedented cell-type and network-specificity of GABAAR subunits and limit the permutation in subunit configurations, thus rationalizing GABAAR physiology and pharmacology. By comparing RNA-seq data on principal cells and interneurons we discuss a tight match between GABAAR subunit allocation, diversity in the origins of GABA inputs and operational rules at synaptic and extrasynaptic sites. We propose that coincident analysis of all GABAAR subunits, particularly in relation to specific behaviors, could overcome existing pitfalls of the genetic and pharmacological manipulation of single subunits. By using α1 and α5 GABAAR subunits, we single out hippocampal spatial learning as a process in which, despite the many studies available to date, neither consensus nor causality exists with regards to GABAAR subtype requirements, curtailing a unifying concept on postsynaptic coding of GABA signals. Finally, we address the modulation of GABAAR subunits by dopamine and endocannabinoids through receptor heteromerization, cross-modulation of signal transduction and allostery. In sum, data in this review infer that multiparametric computation gains momentum to improve knowledge on GABAARs function in cognition and neuropsychiatric illnesses.  相似文献   

5.
Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition.  相似文献   

6.
The amino acid γ-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotrans-mitter that mediates most of its effects through fast GABA-gated Cl?-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes α, β, γ, δ, ε, and ρ, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of α, β, and γ subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular α and γ subunit variants. Little is known about the functional properties of the β, δ, and ε subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.  相似文献   

7.
Abstract

G A B AA/Benzodiazepine receptors are formed by the assembly of presumably five polypeptides with unknown stoichiometry. Six α, three β, two λ, and one δ subunit have been characterized on the molecular level. In analogy to the nicotinic acetylcholine receptor, and supported by functional analysis of recombinantly expressed GABAA receptor subunits, a structure containing at least three different polypeptides has been proposed for the functional GABAA and benzodiazepine regulated Cl?-channel. Using an α1 subunit specific antiserum we could show that additional α variants are present in α1 subunit containing GABAA/Benzodiazepine receptor complexes. This suggests that the diversity of GABAA/Benzodiazepine receptors may be larger than previously thought.  相似文献   

8.
GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.  相似文献   

9.
A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John’s wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4 μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1 μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit.  相似文献   

10.
Hippocampal pyramidal neurons potentially express multiple subtypes of GABAA receptors at extrasynaptic locations that could therefore respond to different drugs. We activated extrasynaptic GABAA receptors in cultured rat hippocampal pyramidal neurons and measured single-channel currents in order to compare the actions of two drugs that potentially target different GABAA receptor subtypes. Despite the possible difference in receptor targets of etomidate and diazepam, the two drugs were similar in their actions on native extrasynaptic GABAA receptors. Each drug produced three distinct responses that differed significantly in current magnitude, implying heterogeneous GABAA receptor populations. In the majority of patches, drug application increased both the single-channel conductance (>40 pS) and the open probability of the channels. By contrast, in the minority of patches, drug application caused an increase in open probability only. In the third group high-conductance channels were observed upon GABA activation and drug application increased their open probability only. The currents potentiated by etomidate or diazepam were substantially larger in patches displaying high-conductance GABA channels compared to those displaying only low-conductance channels. Factors contributing to the large magnitude of these currents were the long mean open time of high-conductance channels and the presence of multiple channels in these patches. In conclusion, we suggest that the local density of extrasynaptic GABAA receptors may influence their single-channel properties and may be an additional regulating factor for tonic inhibition and, importantly, differential drug modulation. This work is dedicated to the memory of Professor P. W. Gage.  相似文献   

11.
AimsHypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABAA receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABAA receptors. The aim of this study was to further explore the molecular mechanisms of GABAA receptor induction by zolpidem.Main methodsIn the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABAA receptors on the membranes of rat cerebellar granule cells (CGCs) using [3H]flunitrazepam binding and semi-quantitative PCR analysis.Key findingsTwo-day zolpidem treatment of CGCs did not significantly affect the maximum number (Bmax) of [3H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [3H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptor complexes.SignificanceIf functional uncoupling of GABA and benzodiazepine binding sites at GABAA receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.  相似文献   

12.
BackgroundGamma-aminobutyric acid A (GABAA) receptors have been implicated in anxiety and epileptic disorders.Hypothesis/PurposeThis study aimed to investigate the effects of stigmasterol, a plant sterol (phytosterol) isolated from Artemisia indica Linn on neurological disorders.MethodsStigmasterol was evaluated on various recombinant GABAA receptor subtypes expressed in Xenopus laevis oocytes and its anxiolytic and anticonvulsant potential was assessed using the elevated plus maze (EPM), light-dark box (LDB) test, and pentylenetetrazole- (PTZ-) induced seizure paradigms. Furthermore, computational modeling of α2β2γ2L, α4β3δ, and α4β3 subtypes was performed to gain insights into the GABAergic mechanism of stigmasterol. For the first time, a model of GABAδ subtype was generated. Stigmasterol was targeted to all the binding sites (neurotransmitters, positive and negative modulator binding sites) of GABAA α2β2γ2L, α4β3, and α4β3δ complexes by in silico docking.ResultsStigmasterol enhanced GABA-induced currents at ternary α2β2γ2L, α4β3δ, and binary α4β3 GABAAR subtypes. The potentiation of GABA-induced currents at extrasynaptic α4β3δ was significantly higher compared to the binary α4β3 subtype, indicating that the δ subunit is important for efficacy. Stigmasterol was found to be a potent positive modulator of the extrasynaptic α4β3δ subtype, which was also confirmed by computational analysis. The computational analysis reveals that stigmasterol preferentially binds at the transmembrane region shared by positive modulators or a binding site constituted by the M2-M3 region of α4 and M1-M2 of β3 at α4β3δ complex. In in vivo studies, Stigmasterol (0.5–3.0 mg/kg, i.p.) exerted significant anxiolytic and anticonvulsant effects in an identical manner of allopregnanolone, indicating the involvement of a GABAergic mechanism.ConclusionTo our knowledge, this is the first study reporting the positive modulation of GABAA receptors, anxiolytic and anticonvulsant potential of stigmasterol. Thus, stigmasterol is considered to be a candidate steroidal drug for the treatment of neurological disorders due to its positive modulation of GABA receptors.  相似文献   

13.
GABAA receptors mediate synaptic and tonic inhibition in many neurons of the central nervous system. These receptors can be constructed from a range of different subunits deriving from seven identified families. Among these subunits, α5 has been shown to mediate GABAergic tonic inhibitory currents in neurons from supraspinal nuclei. Likewise, immunohistochemical and in situ hybridization studies have shown the presence of the α5 subunit in spinal cord neurons, though almost nothing is known about its function. In the present report, using slices of the adult turtle spinal cord as a model system we have recorded a tonic inhibitory current in ventral horn interneurons (VHIs) and determined the functional contribution of the α5 subunit-containing GABAA receptors to this current. Patch clamp studies show that the GABAergic tonic inhibitory current in VHIs is not affected by the application of antagonists of the α4/6 subunit-containing GABAA receptors, but is sensitive to L-655708, an antagonist of the GABAA receptors containing α5 subunits. Last, by using RT-PCR and immunohistochemistry we confirmed the expression of the α5 subunit in the turtle spinal cord. Together, these results suggest that GABAA receptors containing the α5 subunit mediate the tonic inhibitory currents observed in VHIs.  相似文献   

14.
GABAA receptors mediate two different types of inhibitory currents: phasic inhibitory currents when rapid and brief presynaptic GABA release activates postsynaptic GABAA receptors and tonic inhibitory currents generated by low extrasynaptic GABA levels, persistently activating extrasynaptic GABAA receptors. The two inhibitory current types are mediated by different subpopulations of GABAA receptors with diverse pharmacological profiles. Selective antagonism of tonic currents is of special interest as excessive tonic inhibition post-stroke has severe pathological consequences. Here we demonstrate that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent inhibiting phasic currents compared to tonic currents (IC50 values: 101 vs. 427 nM). Conversely, DPP-4-PIOL was estimated to be more than 20 times as potent inhibiting tonic current compared to phasic current (IC50 values: 0.87 vs. 21.3 nM). Consequently, we were able to impose a pronounced reduction in tonic GABA mediated current (>70 %) by concentrations of DPP-4-PIOL, at which no significant effect on the phasic current was seen. Our findings demonstrate that selective inhibition of GABA mediated tonic current is possible, when targeting a subpopulation of GABAA receptors located extrasynaptically using the antagonist, DPP-4-PIOL.  相似文献   

15.
Extracts from Glycyrrhiza are traditionally used for the treatment of insomnia and anxiety. Glabridin is one of the main flavonoid compounds from Glycyrrhiza glabra and displays a broad range of biological properties. In the present work, we investigated the effect of glabridin on GABAA receptors. For this purpose, we employed the two-electrode voltage-clamp technique on Xenopus laevis oocytes expressing recombinant GABAA receptors. Through this approach, we observed that glabridin presents a strong potentiating effect on GABAA α1β(1?3)γ2 receptors. The potentiation was slightly dependent on the β subunit and was most pronounced at the α1β2γ2 subunit combination, which forms the most abundant GABAA receptor in the CNS. Glabridin potentiated with an EC50 of 6.3±1.7 µM and decreased the EC50 of the receptor for GABA by approximately 12-fold. The potentiating effect of glabridin is flumazenil-insensitive and does not require the benzodiazepine binding site. Glabridin acts on the β subunit of GABAA receptors by a mechanism involving the M286 residue, which is a key amino acid at the binding site for general anesthetics, such as propofol and etomidate. Our results demonstrate that GABAA receptors are strongly potentiated by one of the main flavonoid compounds from Glycyrrhiza glabra and suggest that glabridin could contribute to the reported hypnotic effect of Glycyrrhiza extracts.  相似文献   

16.
Summary GABAA receptors present on rat cerebellar granule cells in culture were studied by the whole cell patch clamp technique. Muscimol appeared to be more potent than GABA itself in activating Cl currents. A benzodiazepine, flunitrazepam, only slightly (10%) potentiated the GABA action.These results support the previous suggestion that GABAA receptors containing the subunit, such as those in the cerebellum granule cells, are potently activated by muscimol. The present results also bear out the concept that GABA action on receptors containing the subunit is not potentiated by benzodiazepines.  相似文献   

17.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

18.
GABAA receptors are the major inhibitory transmitter receptors in the central nervous system. They are chloride ion channels that can be opened by γ-aminobutyric acid (GABA) and are the targets of action of a variety of pharmacologically and clinically important drugs. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to the formation of a large variety of distinct GABAA receptor subtypes in the brain. The majority of GABAA receptors seems to be composed of two α, two β and one γ subunit and the occurrence of a defined subunit stoichiometry and arrangement in αβγ receptors strongly indicates that assembly of GABAA receptors proceeds via defined pathways. Based on the differential ability of subunits to interact with each other, a variety of studies have been performed to identify amino acid sequences or residues important for assembly. Such residues might be involved in direct protein-protein interactions, or in stabilizing direct contact sites in other regions of the subunit. Several homo-oligomeric or hetero-oligomeric assembly intermediates could be the starting point of GABAA receptor assembly but so far no unequivocal assembly mechanism has been identified. Possible mechanisms of assembly of GABAA receptors are discussed in the light of recent publications.  相似文献   

19.
Because of its control of spike-timing and oscillatory network activity, γ-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABAA receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing α1GABAA receptors have been found to mediate sedation, whereas those expressing α2GABAA receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic α5GABAA receptors. In addition, neurons expressing α3GABAA receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with α1GABAA receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABAA receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.  相似文献   

20.
Using whole cell patch-clamp recordings from pyramidal cells acutely dissociated from rat hippocampal slices, Ro-15 1788 (flumazenil, FLU) was shown to enhance the GABAA-receptor mediated currents evoked by application of -aminobutyric acid (GABA) and to antagonize the enhancing effect of the benzodiazepine agonist flurazepam (FZP) on the GABAA response. Both FLU and FZP increased the peak and the steady-state components of the responses and accelerated the current decay. This suggests that both agents act via a common mechanism on GABA transmission. It is concluded that FLU possesses high affinity for the binding site, but low efficacy on the GABAA-benzodiazepine receptor. This suggests that FLU acts as a partial agonist on GABAA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号