首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high‐throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high‐throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column.  相似文献   

2.
The mass transfer and adsorption kinetics of self-associating apolipoprotein A-I(Milano) (apoA-I(M)) was investigated for the two anion exchangers Q-Sepharose-HP and Macro-Prep-HQ. At high salt where no protein binding occurs and without urea, mass transfer was controlled by hindered pore diffusion of multiple associated forms for both materials. Adding urea suppressed self-association, but resulted in higher viscosity and caused unfolding. As a consequence, the effective diffusivity decreased as urea was added and was greater for the larger pore Macro-Prep-HQ resin. At low salt, under strong binding conditions, the adsorption kinetics followed a more complex mechanism. In this case, the kinetics was very slow for both stationary phases up to 2 M urea. However, at higher urea concentrations, the adsorption kinetics for the smaller pore Q-Sepharose-HP matrix became much faster, suggesting a transition from pore- to surface-dominated diffusion. Microscopic observations confirmed that different transport mechanisms were in play below and above 2 M urea, which marked the approximate boundary above which self-association was suppressed and unfolding occurred. The net result was enhanced uptake kinetics at high urea concentrations (e.g., 4 M) where protein unfolding is thought to lead to a more flexible structure that can reptate along the pore surface. Although the observed enhancement was dependent on the pore size and, thus, the surface area of the resin, it was not limited to apoA-I(M). BSA showed a similar trend as a function of urea when its disulfide bonds were reduced.  相似文献   

3.
The limiting factor in RNA synthesis by isolated kidney nuclei is RNA nucleotidyltransferase at high salt concentrations but at low salt concentrations template availability becomes limiting. alpha-Amanitin inhibits 85% of the activity at high salt concentrations but only 20-50% of the activity at low salt concentrations. Exogenous DNA is utilized at low salt concentrations [up to 0-1M (NH4)2SO4] but not at high salt concentrations. The effect of increasing salt concentration is mainly to cause an increase in the length of chains synthesized. Initiation rates are not increased by high salt concentrations. The apparent Km for UTP is 8-10 muM at high salt concentrations, indicating that assays performed at low UTP concentrations are likely to give inaccurate results. The activation energy for the reaction at low salt concentration is less than that for the reaction at high salt concentration. The RNA synthesizing capacity of kidney nuclei is dependent on the method of isolation, and preparation by a modification of the Chauveau method (Chauveau et al. 1956) yields the most active nuclei.  相似文献   

4.
Acid-sensing ion channels (ASICs) are non-selective cation channels activated by extracellular acidosis associated with many physiological and pathological conditions. A detailed understanding of the mechanisms that govern cell surface expression of ASICs, therefore, is critical for better understanding of the cell signaling under acidosis conditions. In this study, we examined the role of a highly conserved salt bridge residing at the extracellular loop of rat ASIC3 (Asp(107)-Arg(153)) and human ASIC1a (Asp(107)-Arg(160)) channels. Comprehensive mutagenesis and electrophysiological recordings revealed that the salt bridge is essential for functional expression of ASICs in a pH sensing-independent manner. Surface biotinylation and immunolabeling of an extracellular epitope indicated that mutations, including even minor alterations, at the salt bridge impaired cell surface expression of ASICs. Molecular dynamics simulations, normal mode analysis, and further mutagenesis studies suggested a high stability and structural constrain of the salt bridge, which serves to separate an adjacent structurally rigid signal patch, important for surface expression, from a flexible gating domain. Thus, we provide the first evidence of structural requirement that involves a stabilizing salt bridge and an exposed rigid signal patch at the destined extracellular loop for normal surface expression of ASICs. These findings will allow evaluation of new strategies aimed at preventing excessive excitability and neuronal injury associated with tissue acidosis and ASIC activation.  相似文献   

5.
1. Nutrient concentrations in interstitial water springs at the downstream ends of two gravel bars in the River Rhône were measured in order to estimate the importance of nutrient inputs [nitrate, dissolved organic carbon (DOC), biodegradable and refractory fractions of DOC] from the parafluvial zone (saturated sediments adjacent to the wetted channel, i.e. interstitial habitats of gravel bars) to the river as well as seasonal variations in these inputs.
2. Compared with surface water, parafluvial water had lower concentrations of DOC (especially the refractory fraction) and generally higher concentrations of nitrate. These differences were at their lowest during winter.
3. The influence of gravel bar geomorphological heterogeneity (grain size and spatial distribution of fine sediments) on parafluvial inputs was studied in terms of nutrient content and biofilm characteristics along transects across the gravel bars.
4. A gravel bar located in a stable area of the river had low transversal heterogeneity and acted as a sink for DOC and as a source of nitrate. The low fine sediment content and the high oxygenation of interstitial water must have enabled aerobic processes such as mineralization of organic matter and nitrification to occur.
5. In contrast, gravel bars located in a degradation zone of the river had a spatially variable structure, acting as a sink for DOC and nitrate because localized accumulation of fine sediment and ensuing hypoxic conditions induced anaerobic processes such as denitrification.
6. This study highlights the important influence of geomorphological heterogeneity in gravel bars for nutrient transformations as well as nutrient exchanges between parafluvial interstitial systems and the adjacent river over a seasonal cycle.  相似文献   

6.
Radin JW 《Plant physiology》1981,67(1):115-119
Nitrogen nutrition exerted a strong effect on stomatal sensitivity to water stress in cotton. In well-watered plants grown with 0.31 millimolar N in the nutrient solution, stomata closed at a water potential of -9 bars even though the wilting point was below -15 bars. For each doubling of nutrient N level, the water potential for stomatal closure decreased by about 2 bars. Elevated intercellular CO2 concentrations caused only slight stomatal closure regardless of N nutrition. Exogenous abscisic acid (ABA) greatly increased stomatal sensitivity to elevated CO2 concentrations.  相似文献   

7.
On agar media supplemented with NaCl (5% = 856 mM), seven Trichoderma species aggregates and an isolate intermediate between T. harzianum and T. viride (T. 410) grew more slowly, sporulated poorly, and there was no characteristic pigmentation of the colonies. NaCl or KCl concentrations inducing 'albinization' differed with different isolates. CaCl2 (90-270 mM) reversed the anti-sporulating effect of NaCl (856 mM) on T. 410, and stimulated conidiation in media with no NaCl added. Gliocladium virens but not G. roseum, reacted like Trichoderma to NaCl. Fourteen other fungal genera offered various reactions. Since 856 mM NaCl decreases osmotic potential (eta) of the media used from-1.2 to -41 bars, the influence of eta on T. 410 was examined. After 3 to 4 days, maximal growth was observed between-1.2 and -10 bars. Growth was reduced to 50% at about -30 bars. No growth occurred at about -90 bars. No pigmentation was observed at -32 bars (NaCl) and -41 bars (KCl). Abundant sporulation and pigmentation occurred at -31 bars with CaCl2 as sole electrolyte added. Na+ was toxic at high concentration. Results are discussed in view of possible use of Trichoderma in biological control.  相似文献   

8.
The self-associative properties of apolipoprotein A-I(Milano) (apoA-I(M)) were investigated in relationship to its anion exchange behavior on Q-Sepharose-HP with and without the addition of urea as a denaturant. Self-association was dependent on protein and urea concentration and both influenced interactions of the protein with the chromatographic surface. In the absence of urea, apoA-I(M) was highly associated and existed primarily as a mixture of homodimer, tetramer and hexamer forms. Under these conditions, since the binding strength was greater for the oligomer forms, broad, asymmetrical peaks were obtained in both isocratic and gradient elution. Adding urea depressed self-association and caused unfolding. This resulted in sharper peaks but also decreased the binding strength. Thus, under these conditions chromatographic elution occurred at lower salt concentrations. The adsorption isotherms obtained at high protein loadings were also influenced by self-association and by the varying binding strength of the differently associated and unfolded forms. The isotherms were thus dependent on protein, urea, and salt concentration. Maximum binding capacity was obtained in the absence of urea, where adsorption of oligomers was shown to be dominant. Adding urea reduced the apparent binding capacity and weakened the apparent binding strength. A steric mass action model accounting for competitive binding of the multiple associated forms was used to successfully describe the equilibrium binding behavior using parameters determined from isocratic elution and isotherm experiments.  相似文献   

9.
Chromatography is an essential tool for purifying biopharmaceutical products. Many processes are still developed based on traditional routines and empirical procedures. Product losses are mostly due to insufficient optimization of purification setups and product sensitivity to process conditions. In order to eliminate these shortcomings, a systematic strategy for the setup of ion‐exchange chromatography is presented, which considers both product stability as well as operational conditions. The stages—a hybrid approach combining high‐throughput screening and analytical small‐scale chromatography—are as follows: (1) pH stability (short‐term); (2) pH stability (long‐term), followed by a screening of additives to enhance protein stability, if required; (3) analytical pH gradient chromatography for evaluation of the operational pH window; and (4) salt stability (long‐term) in the operational pH window determined. The efficiency and straightforwardness of the strategy were shown in a case study on capturing the human α‐galactosidase A enzyme. Following the above procedure, the enzyme was found to be salt‐unstable; a purification factor of 13.2, a concentration factor of 4, and an overall yield of 84.3% were achieved. The applied strategy allowed for a quick establishment of a dedicated capture step at low salt concentrations under stable conditions by well‐chosen prior screening experiments.  相似文献   

10.
If the main effect of long-term exposure of tomato plants to salinity is the accumulation of toxic concentrations of Na+ and Cl in the leaves, then the selection of ‘excluder’ rootstocks should increase tolerance to salinity in grafted tomato plants, independently of the genotype used as the scion. The question addressed in this study is whether shoot genotypes with an ‘excluder’ character are able to increase their salt tolerance when grafted onto rootstocks of the same characteristics. Moneymaker (with excluder character) was grafted onto two root genotypes, Radja and Pera, selected for their very different ability to regulate the transport of saline ions to the shoot over time. Grafting onto either Pera or Radja improved fruit yield compared to the self-grafted plants of Moneymaker (M/M) when the plants were grown at 50 mM NaCl, whereas there was no effect of either rootstock or of grafting per se (M/M) on fruit yield in the absence of or at 25 mM NaCl. The relationship between the salt responses to mid- and long-term depended on the stress level; after 27 d of 150 mM NaCl treatment, both graft combinations enhanced similarly their salt tolerances as did in the long-term experiment. Moreover, the tolerance induced by rootstock was related to the low rates of saline ion accumulation in their leaves. However, the positive effect of rootstock was only observed with rootstock Pera when the grafted plants were grown at 50 mM NaCl (the same salt level used in the long-term experiment) for 35 d. According to the physiological changes induced by rootstock in the leaves, the different salt responses seem to be due to the fact that the osmotic effect predominated on the toxic effect under these last conditions. Consequently, in order to select rootstocks care must be taken in the timing of any selection process: the stress level and length of exposure to salinity must be sufficient for the true differences in salt tolerance for toxicity to be shown. Taken together, these results show the effectiveness of grafting to enhance fruit yield in tomato and provide evidence that the positive effect induced by rootstock is related to the re-establishment of ionic homeostasis.  相似文献   

11.
Serum proteome analysis is severely hampered by the extreme dynamic range of protein concentrations, but tools for the specific depletion of highly abundant serum proteins lack for most farm and companion animals. A well‐established alternative strategy to reduce the dynamic range of plasma protein concentrations, treatment with combinatorial peptide ligand libraries (CPLL), is generally applicable but requires large amounts of sample. Therefore, additional depletion/enrichment protocols for plasma and serum samples from animals are desirable. In this respect, we have tested a protein precipitate that formed after withdrawal of salt from human, bovine, or porcine serum at pH 4.2. The bovine sample was composed of over 300 proteins making it a potential source for biomarker discovery. Precipitation was highly reproducible and the concentrations of albumin and other highly abundant serum proteins were strongly reduced. In comparison to the CPLL treatment, precipitation did not introduce any selection bias based on hydrophathy or pI. However, the composition of both preparations was partially complementary. Salt withdrawal at pH 4.2 is suggested as additional depletion/enrichment strategy for serum samples. Also, we point out that the removal of precipitates from serum samples under the described conditions bears the risk of losing a valuable protein fraction.  相似文献   

12.
Red kidney bean (Phaseolus vulgaris L.) plants were grown in nutrient solution and in nutrient solution plus four bars of added NaCl. Chlorophyll and protein decay occurred much more rapidly in intact leaves from plants subjected to four bars of added NaCl in the growth medium than in intact leaves from plants without added NaCl. Ribonucleic acid (RNA) content in intact leaves of salt treated plants was higher than in intact leaves from plants grown in nutrient solution alone. However, the tendency for RNA content variation in leaves during the experimental period was the same for both control and salt treated plants. The results support the idea that salinity enhances senescence and suggests that hormone imbalance plays an important role in this process.  相似文献   

13.
The binding of initiation Factor 3 (IF3) to poly (1,N6-ethenoadenylic acid) [poly(epsilon A)] was investigated by fluorescence spectroscopy. At low salt concentrations, IF3 evokes an increase in the fluorescence intensity of poly(epsilon A) due to the unstacking of the nucleotide bases. The poly(epsilon A) fluorescence enhancement titrates to an endpoint of 13 +/- 2 nucleotide residues per IF3. The maximum poly(epsilon A) fluorescence enhancement, at lattice saturation, decreases with increasing salt concentration. Even though IF3 does not produce a large fluorescence increase between 75 and 200 mM NaCl concentration, the protein still binds to poly(epsilon A) at these salt concentrations as measured by sedimentation partition chromatography; the value of Kobs for the IF3-poly(epsilon A) interaction is comparable to that of other synthetic polynucleotides. The binding of IF3 to poly(A) at 150 and 200 mM NaCl induces an increase in nucleotide base-base separation as determined by CD, yet IF3-induced disruption of base stacking of poly(epsilon A) at these same salt concentrations is not detected by fluorescence. It is likely that IF3 binds primarily to the phosphate backbone of poly(epsilon A) at low salt concentrations, producing an increase in the fluorescence intensity. But, at higher salt concentrations, the aromatic amino acids intercalate between the nucleotide bases quenching the poly(epsilon A) fluorescence.  相似文献   

14.
The second osmotic virial coefficients of seven proteins-ovalbumin, ribonuclease A, bovine serum albumin, alpha-lactalbumin, myoglobin, cytochrome c, and catalase-were measured in salt solutions. Comparison of the interaction trends in terms of the dimensionless second virial coefficient b(2) shows that, at low salt concentrations, protein-protein interactions can be either attractive or repulsive, possibly due to the anisotropy of the protein charge distribution. At high salt concentrations, the behavior depends on the salt: In sodium chloride, protein interactions generally show little salt dependence up to very high salt concentrations, whereas in ammonium sulfate, proteins show a sharp drop in b(2) with increasing salt concentration beyond a particular threshold. The experimental phase behavior of the proteins corroborates these observations in that precipitation always follows the drop in b(2). When the proteins crystallize, they do so at slightly lower salt concentrations than seen for precipitation. The b(2) measurements were extended to other salts for ovalbumin and catalase. The trends follow the Hofmeister series, and the effect of the salt can be interpreted as a water-mediated effect between the protein and salt molecules. The b(2) trends quantify protein-protein interactions and provide some understanding of the corresponding phase behavior. The results explain both why ammonium sulfate is among the best crystallization agents, as well as some of the difficulties that can be encountered in protein crystallization.  相似文献   

15.
盐胁迫对扁桃光合特性和叶绿体超微结构的影响   总被引:14,自引:0,他引:14  
温室条件下,分别用浓度为150、300、350 mmol/L的NaCl和Na2SO4处理‘石头扁桃’和‘桃扁桃’实生苗植株,处理10 d后分别测定其叶片叶绿素含量、净光合速率、气孔导度、细胞间隙CO2浓度,并观察叶绿体超微结构的变化。研究发现:(1)盐胁迫下,‘石头扁桃’和‘桃扁桃’chl a、chl b均在低浓度盐区含量最高,而在高浓度盐区含量最低,Na2SO4处理区chl a、chl b含量均低于NaCl处理区;(2)‘石头扁桃’和‘桃扁桃’叶片净光合速率随盐浓度的增加而下降,‘石头扁桃’下降的幅度较大;(3)‘桃扁桃’叶片细胞间隙CO2浓度随盐浓度的增加而升高,但‘石头扁桃’叶片细胞间隙的CO2浓度变化没有稳定的规律;(4)2个品种的叶片气孔导度均随盐浓度的增加而降低;(5)盐胁迫后,叶绿体基粒、基质片层扭曲,类囊体肿胀;随盐浓度的增加,形变加剧,叶绿体由椭圆形肿胀成圆形,叶绿体膜解体,且‘石头扁桃’叶绿体对盐胁迫比较敏感。综合分析发现,2种盐胁迫对植物造成伤害的机理不同,‘石头扁桃’的耐盐能力较差。  相似文献   

16.
Measurement of unitary conductance is a fundamental step in the characterization of a protein ion channel permeabilizing a membrane. We study here the effect of salts of divalent cations on the OmpF channel conductance with a particular emphasis in dissecting the role of the electrolyte itself, the role of the counterion accumulation induced by the protein channel charges and other effects not found in salts of monovalent cations. We show that current saturation and blocking are not exclusive properties of narrow (single-file) ion channels but may be observed in large, multiionic channels like bacterial porins. Single-channel conductance measurements performed over a wide range of salt concentrations (up to 3 M) combined with continuum electrodiffusion calculations demonstrate that current saturation cannot be simply ascribed to ion interaction with protein channel residues.  相似文献   

17.
Sensitivity of wheat (Triticum aestivum L.) seedlings to salt stress was investigated as dependent on light conditions of plant growing. In two-week-old seedlings grown on salt-free medium, aboveground organs were detached from the roots and subjected to a brief stress at different concentrations of NaCl. The extent of salt stress effect expressed as a decrease in the rate of the photosynthetic release of oxygen and the relative content of water and chlorophyll in the leaves greatly depended on light conditions of growing. The plants grown at low light intensity were notable for a greater sensitivity to NaCl in the medium. Plant responses to salt stress were different at low and high salt concentrations. At low NaCl concentrations (0.05–0.10 M) in the solution, in plants grown at low light intensity, the rate of photosynthesis calculated per unit of chlorophyll increased. This effect was not observed in plants grown at the higher light intensity. At high NaCl concentrations (0.2–0.4 M) in the medium, the rate of photosynthesis rapidly decreased in all the types of treatment, with the effect being most pronounced in plants grown at low light intensity. The obtained results suggest a narrow range of NaCl concentrations with an optimum at 0.1 M positively affecting the wheat seedlings physiological state upon salt stress development depending on light conditions of plant growing.  相似文献   

18.
Summary A theory, recently developed by Sandblom, Eisenman and Neher (1977) for the conductance of single gramicidin A channels predicts three limiting behaviors of the relation between conductance and salt concentration. These are: (i) a saturating behavior resembling a simple adsorption isotherm at medium and high concentrations, (ii) a decrease in conductance at the highest obtainable concentrations and (iii) deviations from the isotherm at very low concentrations. Features i and ii have been described before. Experimental evidence for point iii is given here. The new feature points towards interactions among ions in the channel at ionic concentrations as low as 1–10mm.Particular emphasis is given to the behavior at very low salt concentrations and the experimental problems encountered in this situation. In addition, mutual blocking effects among monovalent ions in symmetrical salt mixtures are characterized and found to be in satisfactory agreement with theoretical expectations, based upon the single salt conductance data presented here and zero-current potentials in salt mixtures to be described in a subsequent paper.  相似文献   

19.
Factorially designed experiments have been used to study the growth and survival of Listeria monocytogenes in different combinations of pH and salt concentrations at ambient and chill temperatures. Survival at low pH and high salt concentration was strongly temperature dependent. The minimum pH values that allowed survival after 4 weeks from an initial 10(4) cells were 4.66 at 30 degrees C, 4.36 at 10 degrees C and 4.19 at 5 degrees C. These limits were salt dependent, low (4-6%) salt concentrations improved and higher concentrations reduced survival at limiting pH values. The lowest pH that allowed a 100-fold increase in cell numbers within 60 d was 4.66 at 30 degrees C but this was increased to 4.83 at 10 degrees C. At 5 degrees C growth occurred at pH 7.0 but not at pH 5.13. Simple predictive models describing the effect of hydrogen-ion and salt concentration on the time for at least a 100-fold increase in numbers at 10 degrees C and 30 degrees C were constructed after analysis of the results for a least squares fit to a quadratic model. The interactions between salt and hydrogen-ion concentration on growth were found to be purely additive.  相似文献   

20.
Porschke D 《Biochemistry》2012,51(19):4028-4034
The intrinsic fluorescence of the cyclic AMP receptor is a sensitive indicator of the reaction with DNA, but signals are perturbed by a photoreaction. A ratio procedure is shown to be useful for correction. The reaction of the protein with DNA indicated by corrected transients extends over a broad time range not only at low salt concentrations but also at physiological salt concentrations. The initial binding step can be recorded preferentially at low salt pH 7 and is shown to be very similar for specific and nonspecific DNA. The rate constant for initial binding at 13.5 mM salt pH 7 is 2 × 10(8) M(-1) s(-1). Slow reaction steps up to times of several hundred seconds are observed both at low and high salt; the magnitude and sign of fluorescence amplitudes are strongly dependent on salt and pH. At 100 mM salt pH 8, the slow reaction step observed for the binding of the cyclic AMP receptor protein to promoter DNA is strongly shifted to longer times upon reduction of the cAMP concentration. The observed cAMP dependence is described quantitatively by a model implying that binding of the receptor to promoter DNA requires two cAMP molecules per protein dimer and is not consistent with a model assuming that a single cAMP is sufficient for activation. The rate constant for binding of the protein·dimer·(cAMP)(2) complex to the promoter is 1.3 × 10(8) M(-1) s(-1), close to the limit of diffusion control. Equilibration of specific complexes takes ~100 s at physiological concentrations of the reaction components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号