首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aims: To study how the antimicrobial and antioxidant activities of Lippia graveolens essential oils with different composition are affected after the microencapsulation process with β‐cyclodextrin (βCD). Methods and results: Three Mexican oregano essential oils (EOs) with different carvacrol/thymol/p‐cymene ratios (38 : 3 : 32, 23 : 2 : 42, 7 : 19 : 35) were used in this study. Microencapsulation was carried out by spray‐drying. Antimicrobial activities were measured as MBC (minimal bactericidal concentration) using 0·05%/0·10%/0·20% (w/v) dilutions of EOs against Escherichia coli ATCC 11229, Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538. Antioxidant activities were determined by the 2,2′‐diphenyl‐1‐picrylhydrazil (DPPH) method. EOs showed antimicrobial and antioxidant activity, but microencapsulation preserved the antimicrobial activity in all cases and increased the antioxidant activity from four‐ to eightfold. Conclusions: Although the Lippia essential oils were from the same species, their composition affects the biological activities before and after the microencapsulation process, as well as encapsulation efficiency. Our study supports the fact that microencapsulation of EOs in β‐cyclodextrin preserves the antimicrobial activity, improves the antioxidant activity and acts as a protection for EOs main compounds. Significance and Impact of the Study: Microencapsulation affects positively EOs main compounds, improves antioxidant activity and retains antimicrobial activity, enhancing the quality of the oils.  相似文献   

3.
This work describes the study of the chemical composition and bioactivity of the essential oils (EOs) of the different organs (leaves, flowers, stems and roots) from Eruca vesicaria. According to the GC and GC/MS analysis, all the EOs were dominated by erucin (4‐methylthiobutyl isothiocyanate) with a percentage ranging from 17.9 % (leaves) to 98.5 % (roots). The isolated EOs were evaluated for their antioxidant (DPPH, ABTS and β‐carotene/linoleic acid), antibacterial and inhibitory property against α‐amylase and α‐glucosidase. Most EOs exhibited an interesting α‐glucosidase and α‐amylase inhibitory potential. The roots essential oil was found to be the most active with IC50 values of 0.80±0.06 and 0.11±0.01 μg mL?1, respectively. The essential oil of roots exhibited the highest antioxidant activity (DPPH, PI=92.76±0.01 %; ABTS, PI=78.87±0.19; and β‐carotene, PI=56.1±0.01 %). The isolated oils were also tested for their antibacterial activity against two Gram‐positive and three Gram‐negative bacteria. Moderate results have been noted by comparison with Gentamicin used as positive control.  相似文献   

4.
The purpose of this study was to investigate essential oils (EOs) from leaves of Elionurus muticus growing in Northeastern Argentina regarding their physicochemical profiles as well as their biological potential. Roots of a selected E. muticus population were investigated too. For this purpose, EOs of fresh materials were obtained by steam distillation and the chemical composition was characterized by gas chromatography GC/MS-FID. Antibacterial, antioxidant and eco-toxicity activities of the essential oils (EOs) were tested by in vitro assays. The EOs showed three E. muticus chemotypes: citral (neral+geranial), acorenone+bisabolone, acorenone+geranial. EO of roots of citral population contains mainly acorenone derivatives. EOs have high antibacterial effect against Staphylococcus aureus, being found minor antibacterial effect against Gram-negative bacteria. The half-maximal inhibitory concentration of EOs against DPPH⋅ were 7.1–30.0 mg/mL and the eco-toxicity was high with LD50 <39 μg/mL. Based on the findings, given the high variability in their chemical composition and biological activity of E. muticus EO and the promising yields, it could be potentially chosen for industrial applications.  相似文献   

5.
The aim of this study was to determine the chemical profile of the essential oils (EOs) of three Moroccan lavender species (Lavandula pedunculata, LP; Lavandula angustifolia, LA; and Lavandula maroccana, LM) and to investigate, for the first time, the synergistic effect of the optimal mixture of the EOs with conventional antibiotic ciprofloxacin against three pathogenic foodborne bacteria. Gas chromatography/mass spectrometry analysis showed that eucalyptol (39·05%), camphor (24·21%) and borneol (8·29%) were the dominant compounds of LA-EO. LP-EO was characterized by the abundance of camphor (74·51%) and fenchone (27·06%), whereas carvacrol (42·08%), camphor (17·95%) and fenchone (12·05%) were the main constituents of LM-EO. EOs alone or combined showed a remarkable antimicrobial activity against the tested bacteria with minimum inhibitory concentrations (MICs) ranging from 3·53 to 15·96 mg ml−1. The optimal mixture, calculated using a mixture design, corresponded to 19% LA, 38% LP and 43% LM. All combination of the EOs and the best EO mixture with ciprofloxacin exhibited a total synergism with fractional inhibitory concentration index values ranging from 0·27 to 0·37. The best EO mixture showed the highest gain of 128-fold, especially against Salmonella spp., more than that found testing the EOs separately. These findings should be taken into consideration for a possible application in the pharmaceutical and food industries.  相似文献   

6.
The essential oils (EOs) from leaves, stems, and whole plant of Piper boehmeriifolium were analyzed using GC/FID and GC/MS. The main constituents of P. boehmeriifolium EOs were β‐caryophyllene, caryophyllene oxide, β‐elemene, spathulenol, germacrene D, β‐selinene, and neointermedeol. The antioxidant potential of the EOs were determined using DPPH?, ABTS?+ and FRAP assays. In ABTS?+ assay, the leaf oil exhibited a remarkable activity with an IC50 value of 7.36 μg/mL almost similar to BHT (4.06 μg/mL). Furthermore, the antibacterial activity of the oils as well as their synergistic potential with conventional antibiotics were evaluated using microdilution and Checkerboard assays. The results revealed that the oils from different parts of P. boehmeriifolium inhibited the growth of all tested bacteria and the minimum inhibitory concentrations were determined to be 0.078 – 1.250 mg/mL. In combination with chloramphenicol or streptomycin, the oils showed significant synergistic antibacterial effects in most cases. Besides, the results of MTT assay indicated that the oil of the whole plant exhibited significant cytotoxic activities on human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF‐7). In summary, the P. boehmeriifolium oils could be regarded as a prospective source for pharmacologically active compounds.  相似文献   

7.
Abstract

In this study, the effect of three essential oils (EOs) – clove oil (CO), thyme oil (TO), and garlic oil (GO), which are generally recognized as safe – on the planktonic growth, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), motility, biofilm formation, and quorum sensing (QS) of Vibrio parahaemolyticus was investigated. All three EOs showed bacteriostatic activity, with MICs in the range 0.02%–0.09% (v/v). CO and TO completely controlled planktonic growth at 0.28% and 0.08% (v/v), which is four times their MIC (4?×?MIC), after 10?min, whereas GO completely controlled growth at 0.36% (v/v) (4?×?MIC) after treatment for 20?min. V. parahaemolyticus motility was significantly reduced by all three EOs at 4?×?MIC (0.28% for CO, 0.08% for TO, and 0.36% for GO), whereas QS was controlled and biofilm formation reduced by all three EOs at 8?×?MIC (0.56% for CO, 0.16% for TO, and 0.72% for GO) after 30?min of treatment. These results suggest that CO, TO, and GO have a significant inhibitory effect on V. parahaemolyticus cells in biofilm sand thus represent a promising strategy for improving food safety. These results provide the evidence required to encourage further research into the practical use of the proposed EOs in food preparation processes.  相似文献   

8.
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC no. 739) and Proteus vulgaris (MTCC no. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0·2, 0·3 and 0·4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11–14 nm). Antibacterial activities of CuNPs were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests, cytoplasmic leakage and reactive oxygen species (ROS) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNP–microorganism interaction induces oxidative stress generated by ROS. Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNP-induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.  相似文献   

9.
The increased resistance of fish pathogens to conventional treatments has lead researchers to investigate the antibacterial properties of natural resources, such as essential oils (EOs) of plants, in an effort to find products that are less harmful to the environment. The objective of this review is to provide an overview of the studies, in vivo and in vitro, that addressed the use of EOs and their major compounds as antimicrobial agents in fish, to identify the best EOs and compounds to investigate considering feasibility of application and suggest possible future studies. To date, studies suggest that the use of EOs in the prevention and/or treatment of infectious diseases in fish may be a promising strategy to reduce the use of conventional antibiotics in aquaculture, since several EOs effectively reduce or avoid the effects of bacterial infections in fish. The use of EOs through nanotechnology delivery systems, especially in dietary supplementation experiments, is promising. This form of application of the EOs allows a potentiation and targeting of the desired effect of the EOs and also allows the protection of EOs active constituents against enzymatic hydrolysis, deserving further study.  相似文献   

10.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

11.
Aims: The aim of this work was to analyse the antimicrobial properties of a purified lectin from Eugenia uniflora L. seeds. Methods and Results: The E. uniflora lectin (EuniSL) was isolated from the seed extract and purified by ion‐exchange chromatography in DEAE‐Sephadex with a purification factor of 11·68. The purified lectin showed a single band on denaturing electrophoresis, with a molecular mass of 67 kDa. EuniSL agglutinated rabbit and human erythrocytes with a higher specificity for rabbit erythrocytes. The haemagglutination was not inhibited by the tested carbohydrates but glycoproteins exerted a strong inhibitory action. The lectin proved to be thermo resistant with the highest stability at pH 6·5 and divalent ions did not affect its activity. EuniSL demonstrated a remarkable nonselective antibacterial activity. EuniSL strongly inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella sp. with a minimum inhibitory concentration (MIC) of 1·5 μg ml?1, and moderately inhibited the growth of Bacillus subtilis, Streptococcus sp. and Escherichia coli with a MIC of 16·5 μg ml?1. Conclusions: EuniSL was found to be effective against bacteria. Significance and Impact of the Study: The strong antibacterial activity of the studied lectin indicates a high potential for clinical microbiology and therapeutic applications.  相似文献   

12.
以开花期的椒样薄荷(Mentha×piperita)、薄荷(M.haplocalyx)和苏格兰留兰香(M.×gentilis)叶片部位提取的精油为研究对象,通过GC-MS分析,并采用纸片扩散法研究了3种精油单独使用及与抗生素联合使用时对金黄色葡萄球菌、蜡状芽孢杆菌、大肠杆菌、绿脓杆菌和肺炎克雷伯氏菌的抑制情况。结果表明,(1)椒样薄荷与薄荷精油中含量最高的成分为薄荷醇、薄荷酮和异薄荷酮,苏格兰留兰香精油的主要成分为香芹酮和柠檬烯。薄荷和苏格兰留兰香精油符合欧洲药典与ISO标准,椒样薄荷需要继续改良以提高其精油品质与抑菌功能。(2)精油单独使用时,Pseudomonas aeruginosa ATCC15442对椒样薄荷精油和薄荷精油敏感;P.aeruginosa ATCC27853对薄荷精油和苏格兰留兰香精油敏感。精油与抗生素联合使用时抑菌范围和强度均有所改变:绿脓杆菌的2个菌株对精油与抗生素的组合最为敏感,其中,椒样薄荷精油与头孢他啶的组合对P.aeruginosa ATCC15442显示出最强的增效作用,薄荷精油与头孢他啶混合之后对P.aeruginosa ATCC27853出现拮抗作用。Staphylococcus aureus ATCC25923对所有精油以及精油与抗生素混合物均有抗性。(3)椒样薄荷、薄荷和苏格兰留兰香精油的不同成分及其含量差异不仅对精油品质有影响,而且影响精油对测试菌种的抑制作用,可考虑将其作为薄荷属植物品质育种的参考指标。  相似文献   

13.
The compound of essential oils (EOs) is a key approach to achieving the superimposed efficacy of plant EOs. In this article, grey correlation analysis was applied for the first time to explore the compound ratios and contribution between constituents and the bioactivity of the compound EOs. There were 12 active constituents shared in rosemary and magnolia EOs prepared by negative pressure distillation. With different proportions, these two EOs were blended and analyzed for the antioxidant, bacteriostatic and antitumor effects. According to the results of the inhibition circle, minimum bactericidal and inhibitory concentration, the most obvious inhibition effect of the compound EOs on different strains of bacteria was shown in Staphylococcus aureus. The results of antioxidant test showed that single EO from rosemary had the best antioxidant effect, and its EO content was directly proportional to the antioxidant effect. The cytotoxicity results showed that, there was a significant difference in the lethality of the compound EOs between tumor cells Mcf-7 (human breast cancer cells) and SGC-7901 cells (human gastric cancer cells). Furthermore, single EO from magnolia had an obvious inhibitory effect on the growth of Mcf-7 cells and SGC-7901 cells, and the cell lethality rate was as high as 95.19 % and 97.96 %, respectively. As the results of grey correlation analysis, the constituents with the maximal correlation of inhibitory effects on bacteria were as follows: S. aureus – Terpinolene (0.893), E. coli – Eucalyptol (0.901), B. subtilis – α-Pinene (0.823), B. cereus – Terpinolene (0.913) and Salmonella – α-Phellandrene (0.855). For the ABTS and DPPH scavenging effects, the constituents with the maximal correlation were (−)-Camphor (0.860) and β-Pinene (0.780), respectively. In terms of the effects of the active constituents of compound EOs on the inhibitory activities of tumor cells Mcf-7 and SGC-7901, the three active constituents of γ-Terpinene, (R)-(+)-β-Citronellol and (−)-Camphor were in the top three, and their correlation were Mcf-7 (0.833, 0.820, 0.795) and SGC-7901 (0.797, 0.766, 0.740). Our study determined the contribution degree of active constituents in the antibacterial, antioxidant, and antitumor bioactivities of rosemary-magnolia compound EOs, and also provided new insights for the research of EOs combination formulations.  相似文献   

14.
Clove bud is a medicinal plant used traditionally in Asia for the treatment of various disease. Previously, Clove oil is a potential source of an antimicrobial compounds especially vis-a-vis bacterial pathogens. However, the compound responsible for this activity remains to be investigated. Essential oil (EO) clove, acetylated essential oil clove, eugenol, and acetyleugenol were evaluate as an antibacterial potential agent against Staphyloccocus aureus (SE), Escherichia coli (EC) and Pseudomonas aeruginosa (PA). Essential oil containing eugenol was extracted from buds of Eugenia caryophyllata commonly named clove (Syzygium aromaticum (L.) (Family Myrtaceae) by a simple hydrodistillation. The analysis of the essential oils (EOs) using gas chromatography-mass spectrometry (GC-MS) shows eugenol as the major constituent with 70.14 % of the total. The Eugenol was isolated from the EO using chemical treatment. Afterwards, the EO and eugenol were converted to acetylated EO and acetyleugenol, respectively using acetic anhydride. The antibacterial result revealed that all compounds showed a strong activity against the three strains. The Staphyloccocus aureus and Pseudomonas aeruginosa were extremely sensitive against eugenol with an inhibition diameters of 25 mm. The MIC values of eugenol versus S. aureus and P. aeruginosa were 0.58 and 2.32 mg/mL, respectively, while the MIB values were 2.32 mg/mL and 9.28 mg/mL.  相似文献   

15.
Background. Recent study has demonstrated that β‐lactamase inhibitors including clavulanate, sulbactam and tazobactam have an vitro antibacterial effect on Helicobacter pylori. Here we describe the relationship between viability and cell profiles of H. pylori exposed to β‐lactamase inhibitors and some antibiotics in a short‐time course. Materials and methods. The antibacterial effects of β‐lactamase inhibitors including clavulanate, sulbactam and tazobactam on the bacterial viability of and morphological changes in H. pylori ATCC43504 were examined. Results. The β‐lactamase inhibitors such as clavulanate and sulbactam alone decreased the viable counts of H. pylori, depending on the antibiotic concentrations. Exposure to these β‐lactamase inhibitors resulted in morphological changes of cell shape, cell‐wall disintegration and cell lysis. Among these β‐lactamase inhibitors, clavulanate was the most active, causing a decrease in viable counts and morphological changes such as short filamentous to sphaeroplast formation and lysis. One × minimum inhibitory concentration (MIC) of amoxicillin plus 1 × MIC of clavulanate decreased viable counts effectively compared with 1 × MIC of amoxicillin or 1 × MIC of clavulanate alone, and induced morphological changes of cell shape and cell wall. Conclusion. Our results suggest that the β‐lactamase inhibitors alone have concentration‐dependent antibacterial activities against H. pylori and affect the morphology of the cell shape and the cell wall in vitro.  相似文献   

16.
The essential oils (EOs) obtained from the leaves of Iryanthera polyneura Ducke trees was chemically Assessed and tested for the ability of inhibiting the growth of Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans and S. sanguinis. The oil was also tested against breast (MCF‐7) and prostate (PC‐3) cancer cell lines. Minimum bactericidal concentrations (MBCs) and 50 % inhibition concentrations (IC50) values were obtained. EOs were active against Gram‐positive bacteria. Spathulenol, α‐cadinol and τ‐muurolol were major components of EOs. The oils showed a higher cytotoxicity against PC‐3 than MCF‐7 cells, although the oils were active against both cell types. Oils obtained from leaves collected in the dry season were more active against E. faecalis, S. aureus and PC‐3, while the oils obtained from leaves collected in the rainy season were more active against S. mutans, S. sanguinis and MCF‐7. The antibacterial and cytotoxic activities of the essential oils from the leaves of I. polyneura are related to the seasonal climate variation and are influenced by compounds that are minor components of the oils.  相似文献   

17.
Developing effective and eco‐friendly antimicrobials and pesticides has become a highly important issue. The repellent, insecticidal and antimicrobial activity of essential oils (EOs) isolated by hydrodistillation from dried leaves of the three Eucalyptus species (E. cloeziana, E. umbellata and E. benthamii) were investigated. During GC/MS analysis, α‐pinene (47.36 %), 1,8‐cineol (38.53 %) and α‐pinene (35.31 %) were identified as major components of E. cloeziana, E. umbellata and E. benthamii, respectively. The EOs from E. cloeziana exhibited the longest effective protection time (465 min, at 50.0 % w/w) for humans among the EOs studied. The effective protection time was 30 min and 300 min at concentrations of 12.5 % (w/w) and 25.0 % (w/w), respectively. Fumigating insecticidal activity of EOs from three Eucalyptus species was tested by airtight fumigation in conical flask, which indicated that essential oils had a highly and rapidly insecticidal activity on Culex pipiens quinquefasciatus. The antimicrobial activity of EOs was evaluated by using disc diffusion and agar dilution methods. There was no significant difference in the antibacterial activity of EOs from E. cloeziana and E. umbellate and they had the same MICs (20 mL/L) on Staphylococcus aureus, Salmonella typhi, Bacillus subtilis and Escherichia coli. E. benthamii had the worst microbial inhibitory effect among the three Eucalyptus essential oils and the MIC value for the test species is 40 mL/L except for Rhodotorula Harrison (10 mL/L).  相似文献   

18.
Cissampelos sympodialis Eichler is well studied and investigated for its antiasthmatic properties, but there are no data in the literature describing antibacterial properties of alkaloids isolated from this botanical species. This work reports the isolation and characterization of phanostenine obtained from roots of C. sympodialis and describes for the first time its antimicrobial and antibiotic modulatory properties. Phanostenine was first isolated from Cissampelos sympodialis and its antibacterial activities were determined. Chemical structures of the alkaloid isolate were determined using spectroscopic and chemical analyses. Phanostenine was also tested for its antibacterial activity against standard strains and clinical isolates of Escherichia coli and Staphylococcus aureus. Minimal inhibitory concentration (MIC) was determined in a microdilution assay and for the evaluation of antibiotic resistance‐modifying activity. MIC of the antibiotics was determined in the presence or absence of phanostenine at sub‐inhibitory concentrations. The evaluation of antibacterial activity by microdilution assay showed activity for all strains with better values against S. aureus ATCC 12692 and E. coli 27 (787.69 mm ). The evaluation of aminoglycoside antibiotic resistance‐modifying activity showed reduction in the MIC of the aminoglycosides (amikacin, gentamicin and neomycin) when associated with phanostenine, MIC reduction of antibiotics ranging from 21 % to 80 %. The data demonstrated that phanostenine possesses a relevant ability to modify the antibiotic activity in vitro. We can suggest that phanostenine presents itself as a promising tool as an adjuvant for novel antibiotics formulations against bacterial resistance.  相似文献   

19.
以开花期的椒样薄荷(Mentha × piperita)、薄荷(M. haplocalyx)和苏格兰留兰香(M. × gentilis)叶片部位提取的精油为研究对象, 通过GC-MS分析, 并采用纸片扩散法研究了3种精油单独使用及与抗生素联合使用时对金黄色葡萄球菌、蜡状芽孢杆菌、大肠杆菌、绿脓杆菌和肺炎克雷伯氏菌的抑制情况。结果表明, (1) 椒样薄荷与薄荷精油中含量最高的成分为薄荷醇、薄荷酮和异薄荷酮, 苏格兰留兰香精油的主要成分为香芹酮和柠檬烯。薄荷和苏格兰留兰香精油符合欧洲药典与ISO标准, 椒样薄荷需要继续改良以提高其精油品质与抑菌功能。(2) 精油单独使用时, Pseudomonas aeruginosa ATCC 15442对椒样薄荷精油和薄荷精油敏感; P. aeruginosa ATCC 27853对薄荷精油和苏格兰留兰香精油敏感。精油与抗生素联合使用时抑菌范围和强度均有所改变: 绿脓杆菌的2个菌株对精油与抗生素的组合最为敏感, 其中, 椒样薄荷精油与头孢他啶的组合对P. aeruginosa ATCC 15442显示出最强的增效作用, 薄荷精油与头孢他啶混合之后对P. aeruginosa ATCC 27853出现拮抗作用。Staphylococcus aureus ATCC 25923对所有精油以及精油与抗生素混合物均有抗性。(3) 椒样薄荷、薄荷和苏格兰留兰香精油的不同成分及其含量差异不仅对精油品质有影响, 而且影响精油对测试菌种的抑制作用, 可考虑将其作为薄荷属植物品质育种的参考指标。  相似文献   

20.
Needles of seven cultivated clones (C1 – C7) of Juniperus communis at lower altitude and three wild Juniperus species (Jcommunis, Jrecurva and Jindica) at higher altitudes were investigated comparatively for their essential oils (EOs) yields, chemical composition, cytotoxic and antibacterial activities. The EOs yields varied from 0.26 to 0.56% (v/w) among samples. Sixty‐one volatile components were identified by gas chromatography‐mass spectrometry (GC/MS) and quantified using gas chromatography GC (FID) representing 82.5 – 95.7% of the total oil. Monoterpene hydrocarbons (49.1 – 82.8%) dominated in all samples (α‐pinene, limonene and sabinene as major components). Principal component analysis (PCA) of GC data revealed that wild and cultivated Juniperus species are highly distinct due to variation in chemical composition. Jcommunis (wild species) displayed cytotoxicity against SiHa (human cervical cancer), A549 (human lung carcinoma) and A431 (human skin carcinoma) cells (66.4 ± 2.2%, 74.4 ± 1.4% and 57.4 ± 4.0%), respectively, at 200 μg/ml. EOs exhibited better antibacterial activity against Gram‐positive bacteria than against Gram‐negative bacteria with the highest zone of inhibition against Staphylococcus aureus MTCC 96 (19.2 ± 0.7) by clone‐7. As per the conclusion of the findings, EOs of clone‐2, clone‐5 and clone‐7 can be suggested to the growers of lower altitude, as there is more possibility of uses of these EOs in food and medicinal preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号