首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim: The purpose of this work was to evaluate the size‐dependent antifungal activity of different silver nanoparticles (SN) colloidal suspensions against Candida albicans and Candida glabrata mature biofilms. Methods and Results: The research presented herein used SN of three different average sizes (5, 10 and 60 nm), which were synthesized by the reduction of silver nitrate through sodium citrate and which were stabilized with ammonia or polyvinylpyrrolidone. Minimal inhibitory concentration (MIC) assays were performed using the microdilution methodology. The antibiofilm activity of SN was determined by total biomass quantification (by crystal violet staining) and colony forming units enumeration. MIC results showed that all SN colloidal suspensions were fungicidal against the tested strains at very low concentrations (0·4–3·3 μg ml?1). With regard to biomass quantification, SN colloidal suspensions were very effective only against C. glabrata biofilms, achieving biomass reductions around 90% at a silver concentration of 108 μg ml?1. In general, all SN suspensions promoted significant log10 reduction of the mean number of cultivable biofilm cells after exposure to silver concentrations at or higher than 108 μg ml?1. Moreover, the results showed that the particle size and the type of stabilizing agent used did not interfere in the antifungal activity of SN against Candida biofilms. Conclusions: This study suggests that SN have antifungal therapeutic potential, but further studies are still required namely regarding formulation and delivery means. Significance and Impact of the Study: SN may contribute to the development of new strategies for the improvement of oral health and quality of life particularly of the complete denture wearers.  相似文献   

2.
A nickel oxide nanoparticle (NiO NP) composite with carbon dots (C-dots), (NiO NPs@C-dots) was synthesized, characterized, and then its antibacterial activity was evaluated. NiO NPs were prepared using Buddleja polystachya Fresen leaf extract and Ni(NO3)2.6H2O as precursors. The C-dots were synthesized from benzene-1,4-diamine and citric acid. The cubic structure of the NiO NPs and NiO NPs@C-dots was in phase with their average particle size distributions of 21.47 ± 0.56 and 21.61 ± 0.34 nm, respectively. The surface morphology of the NiO NPs@C-dots was characterized using field emission scanning electron microscopy and also revealed a large surface area, which is advantageous for the specified application. The X-ray diffraction result indicated a cubic face wurtzite structure and the crystalline nature of the NiO NPs. Carbon-doped compounds had no influence on the crystal structure of the NiO compound and no new peaks were observed. The antibacterial activity of a composite made up of NiO NPs@C-dots was tested, as well as the antibacterial activities of compounds produced against human photogenic bacterial strains. Both NiO NPs and NiO NPs@C-dots were found to be powerful against all bacterial strains, based on the bioassay results. NiO NPs and NiO@C-dots appeared to display strong to inhibitory effects of 14–20 mm and 17–23 mm, respectively.  相似文献   

3.
In this work, fluorescent carbon dots (CDs) were synthesized using a hydrothermal method with glucose as the carbon source and were surface‐modified with ethylenediamine. The properties of as‐prepared CDs were analyzed by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet–visible light (UV/vis) absorption and fluorescent spectra. Furthermore, CDs conjugated with mouse anti‐(human carcinoembryonic antigen) (CEA) monoclonal antibody were successful employed in the biolabeling and fluorescent imaging of human gastric carcinoma cells. In addition, the cytotoxicity of CDs was also tested using human gastric carcinoma cells. There was no apparent cytotoxicity on human gastric carcinoma cells. These results suggest the potential application of the as‐prepared CDs in bioimaging and related fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen‐doped carbon dots (N‐CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N‐CDs with superior fluorescence performances. The as‐prepared N‐CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength‐dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N‐CDs were investigated using the rat glomerular mesangial cells. The results showed the N‐CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as‐obtained N‐CDs could have potential applications in biosensors, cellular imaging, and other fields.  相似文献   

5.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

6.
Highly blue fluorescence carbon dots were synthesized by one‐step hydrothermal treatment of potatoes. The as‐obtained C‐dots have been applied to bioimaging of HeLa cells, which shows their excellent biocompatibility and low cytotoxicity. The results reveal that C‐dots are promising for real cell imaging applications. In addition, the carbon dots can be utilized as a probe for sensing phosphate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this study was to examine the antimicrobial efficiency and color changes of cotton fabrics loaded with colloidal silver nanoparticles which were synthesized without using any stabilizer. The influence of colloidal concentration and consequently, the amount of silver deposited onto the fabric surface, on antimicrobial activity against Gram-negative bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus and fungus Candida albicans as well as laundering durability of obtained effects were studied. Although cotton fabrics loaded with silver nanoparticles from 10 ppm colloid exhibited good antimicrobial efficiency, their poor laundering durability indicated that higher concentrated colloids (50 ppm) must be applied for obtaining long-term durability. Additionally, the influence of dyeing with C.I. Direct Red 81 on antimicrobial activity of cotton fabrics loaded with silver nanoparticles as well as the influence of their presence on the color change of dyed fabrics were evaluated. Unlike color change, the antimicrobial efficiency was not affected by the order of dyeing and loading of silver nanoparticles.  相似文献   

8.
9.
Interestingly pharmaceutical sciences are using nanoparticles (NPs) to design and develop nanomaterials-based drugs. However, up to recently, it has not been well realized that NPs themselves may impose risks to the biological systems. In this study, the interaction of silver nanoparticles (AgNPs) with tau protein and SH-SY5Y neuroblastoma cell line, as potential nervous system models, was examined with a range of techniques including intrinsic fluorescence spectroscopy, circular dichroism (CD) spectroscopy, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and acridine orange/ethidium bromide (AO/EB) dual staining method. Fluorescence study showed that AgNPs with a diameter of around 10–20 nm spontaneously form a static complex with tau protein via hydrogen bonds and van der Waals interactions. CD experiment revealed that AgNPs did not change the random coil structure of tau protein. Moreover, AgNPs showed to induce SH-SY5Y neuroblastoma cell mortality through fragmentation of DNA which is a key feature of apoptosis. In conclusion, AgNPs may induce slight changes on the tau protein structure. Also, the concentration of AgNPs is the main factor which influences their cytotoxicity. Since, all adverse effects of NPs are not well detected, so probably additional more specific testing would be needed.  相似文献   

10.
The attempted alkylation of 1,3-bis(2′-pyridylimino)isoindoline (indH) by the use of n-BuLi and subsequent alkyl halides led to quaternization of the pyridine nitrogens and the zwitterionic monodentate N-ligand (Me2ind)I was formed. By the use of the ligand the copper(I) complex [CuI(Me2ind)I2] was prepared and its structure determined. It was found to be good catalyst for the oxidation of 3,5-di-tert-butylcatechol (DTBCH2) to 3,5-di-tert-butyl-1,2-benzoquinone (DTBQ) and H2O2 by dioxygen. Detailed kinetic studies revealed first-order dependence on the catalyst and dioxygen concentration and saturation type behavior with respect to the substrate.  相似文献   

11.
Two new cyclic lipopeptides termed laxaphycins B4 (1) and A2 (2) were discovered from a collection of the marine cyanobacterium Hormothamnion enteromorphoides, along with the known compound laxaphycin A. The planar structures were solved based on a combined interpretation of 1D and 2D NMR data and mass spectral data. The absolute configurations of the subunits were determined by chiral LC-MS analysis of the hydrolysates, advanced Marfey’s analysis and 1D and 2D ROESY experiments. Consistent with similar findings on other laxaphycin A- and B-type peptides, laxaphycin B4 (1) showed antiproliferative effects against human colon cancer HCT116 cells with IC50 of 1.7?µM, while laxaphycins A and A2 (2) exhibited weak activities. The two major compounds isolated from the sample, laxaphycins A and B4, were shown to act synergistically to inhibit the growth of HCT116 colorectal cancer cells.  相似文献   

12.
A family of tripodal pyrazole-based ligands has been synthesized by a condensation reaction between 1-hydroxypyrazoles and aminoalcohols. The diversity was introduced both on the substituents of the pyrazole ring and on the side chain. The corresponding copper(II) complexes have been prepared by reaction with CuCl2 in tetrahydrofuran. They have been characterized by EPR, UV spectroscopy and cyclic voltammetry. The absence of the half-field splitting signals in EPR suggests that the complex exists in solution as mononuclear species. The influence of substituents and side chain of the tripodal ligand on the catecholase activity of the complexes was studied. The reaction rate depends on two factors. First, the presence of an oxygen atom in the third position of the side chain should be avoided to keep the effectiveness of the reaction. Second, the electronic and steric effects of substituents on the pyrazole ring strongly affect the catalytic activity of the complex. Thus, best results were obtained with complexes containing unsubstituted pyrazole based-ligands. Kinetic investigations with the best catalyst based on the Michaelis–Menten model show that the catalytic activity of the mononuclear complex is close to that of some dicopper complexes described in literature.  相似文献   

13.
14.
The interaction of glucose‐derived carbon quantum dots (CQDs) with silver (Ag) and gold (Au) nanoparticles (NPs) was explored by fluorescence spectroscopy. Both metal NPs cause an efficient quenching of CQD fluorescence, which is likely due to the energy transfer process between CQDs as donors and metal NPs as acceptors. The Stern–Volmer plots were evaluated and corresponding quenching constants were found to be 1.9 × 1010 and 2.2 × 108 M?1 for AgNPs and AuNPs, respectively. The analytical applicability of these systems was demonstrated for turn‐on fluorescence detection of the anti‐cancer drug, 6‐thioguanine. Because the CQD–AgNP system had much higher sensitivity than the CQD–AuNP system, we used it as a selective fluorescence probe in a turn‐on assay of 6‐thioguanine. Under optimum conditions, the calibration graph was linear from 0.03 to 1.0 μM with a detection limit of 0.01 μM. The developed method was applied to the analysis of human plasma samples with satisfactory results.  相似文献   

15.
Polyvinyl chloride (PVC) sheets are a promising material for enzyme immobilization owing to the PVC’s properties such as being chemically inert, corrosion free, weather resistant, tough, lightweight, and maintenance free and having a high strength-to-weight ratio. In this study, this attractive material surface was chemically modified and exploited for covalent immobilization of oxalate oxidase using glutaraldehyde as a coupling agent. The enzyme was immobilized on activated PVC surface with a conjugation yield of 360 μg/cm2. The scanning electron micrographs showed the microstructures on the PVC sheet surface revealing the successful immobilization of oxalate oxidase. A colorimetric method was adopted in evaluating enzymatic activity of immobilized and native oxalate oxidase. The immobilized enzyme retained 65% of specific activity of free enzyme. Slight changes were observed in the optimal pH, incubation temperature, and time for maximum activity of immobilized oxalate oxidase. PVC support showed no interference when immobilized oxalate oxidase was used for estimation of oxalic acid concentration in urine samples and showed a correlation of 0.998 with the values estimated with a commercially available Sigma kit. The overall results strengthen our view that PVC sheet can be used as a solid support for immobilization of enzymes and in the field of clinical diagnostics, environmental monitoring and remediation.  相似文献   

16.
Nitrogen-doped carbon dots (NCDs) with bright blue fluorescence were constructed by a hydrothermal method using sucrose and l- proline as raw materials. The NCDs were characterized by transmitted electron microscopy, X-ray diffraction, Fourier-transform infrared spectrometry, X-ray photoelectron spectroscopy, and ultraviolet-visible absorption and fluorescence spectroscopy to investigate the morphology, elemental composition, and optical properties. The NCDs had good water solubility, high dispersibility with an average diameter of only 1.7 nm, and satisfactory optical properties with a fluorescence quantum yield of 23.4%. The NCDs were employed for the detection of bilirubin. A good linear response of the NCDs in the range 0.35–9.78 μM was obtained for bilirubin with a detection limit of 33 nM. The NCDs were also applied to the analysis of real samples, serum and urine, with a recovery of 95.34% to 104.66%. The low cytotoxicity and good biocompatibility of the NCDs were indicated by an MTT assay and cell imaging of HeLa cells. Compared with other detection systems, using NCDs for bilirubin detection was a facile and efficient method with good selectivity and sensitivity.  相似文献   

17.
In this present study, a fluorescent probe was developed to detect curcumin, which is derived from the rhizomes of the turmeric. We used a simple and economical way to synthesize boron and nitrogen co‐doped carbon dots (BNCDs) by microwave heating. The maximum emission wavelength of the BNCDs was 450 nm at an excitation wavelength of 360 nm. The as‐prepared BNCDs were characterized by multiple analytical techniques such as transmission electron microscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, and infrared spectroscopy. The synthesized carbon nanoparticles had an average particle diameter of 4.23 nm. The BNCDs exhibited high sensitivity to the detection of curcumin at ambient conditions. The changes of BNCDs fluorescent intensity show a good linear relationship with the curcumin concentrations in the range 0.2–12.5 μM. This proposed method has been successfully applied to detect the curcumin in urine samples with the recoveries of 96.5–105.5%.  相似文献   

18.
EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 μM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 μM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.  相似文献   

19.
目的研究穿心莲内酯抗铜绿假单胞菌生物被膜及与阿奇霉素协同抗菌作用。方法微量倍比稀释法测定穿心莲内酯对铜绿假单胞菌的最小抑菌浓度(MIC),棋盘稀释法测定穿心莲内酯和阿奇霉素协同抗菌作用,MTT法测定穿心莲内酯对铜绿假单胞菌生物被膜的最小抑膜浓度(SMIC),显微镜下观察药物对生物膜形态的影响。结果穿心莲内酯对铜绿假单胞菌的MIC 50μg/mL,和阿奇霉素有协同抗菌作用。穿心莲内酯对铜绿假单胞菌生物被膜的SMIC501天25μg/mL、3天25μg/mL、7天50μg/mL;SMIC801天50μg/mL、3天50μg/mL、7天100μg/mL,形态观察提示穿心莲内酯SMIC80浓度对铜绿假单胞菌生物被膜的抑制作用明显。结论穿心莲内酯具有抗铜绿假单胞菌生物被膜作用,对阿奇霉素也有协同抗菌作用。  相似文献   

20.
The present study focused on the evaluation of antibacterial property of silver nanoparticles (AgNPs) synthesized using mango flower extract. The morphology of the synthesized AgNPs was observed under transmission electron microscopy and the particles have shown spherical shape in the range of 10–20 nm. X-ray powder diffraction analysis confirmed the crystalline nature of the AgNPs. The atomic percentage of the Ag element in the nanoparticles was about 7.58% which is greater than the other elements present in the sample. The AgNPs showed extensive lethal effect on both Gram-positive (Staphylococcus sp.) and Gram-negative (Klebsiella sp., Pantoea agglomerans, and Rahnella sp.) bacteria. The extensive lethal effect of AgNPs against clinically important pathogens demonstrated that the mango flower mediated AgNPs could be applied as potential antibacterial agent to control the bacterial population in the respective industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号