首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pseudomonas syringae pv. tomato DC3000 type III secretion system (TTSS) is required for bacterial pathogenicity on plants and elicitation of the hypersensitive response (HR), a programmed cell death (PCD) that occurs on resistant plants. Cosmid pHIR11 enables non-pathogens to elicit an HR dependent upon the TTSS and the effector HopPsyA. We used pHIR11 to determine that effectors HopPtoE, avirulence AvrPphEPto, AvrPpiB1Pto, AvrPtoB, and HopPtoF could suppress a HopPsyA-dependent HR on tobacco and Arabidopsis. Mixed inoculum and Agrobacterium-mediated transient expression experiments confirmed that suppressor action occurred within plant cells. These suppressors, with the exception of AvrPpiB1Pto, inhibited the expression of the tobacco pathogenesis-related (PR) gene PR1a. DC3000 suppressor mutants elicited an enhanced HR consistent with these mutants lacking an HR suppressor. Additionally, HopPtoG was identified as a suppressor on the basis of an enhanced HR produced by a hopPtoG mutant. Remarkably, these proteins functioned to inhibit the ability of the pro-apoptotic protein, Bax to induce PCD in plants and yeast, indicating that these effectors function as anti-PCD proteins in a trans-kingdom manner. The high proportion of effectors that suppress PCD suggests that suppressing plant immunity is one of the primary roles for DC3000 effectors and a central requirement for P. syringae pathogenesis.  相似文献   

2.
Xylella fastidiosa, a bacterial species infecting a broad range plants, includes five subspecies, fastidiosa, multiplex, pauca, mulberry and sandyi. In Europe, Xylella was isolated in olive trees in southern Italy (Apulia region) during the year 2013. The aim of the present study was to apply phylogenetic and evolutionary analysis to trace the possible origin and way of the entrance of Xylella fastidiosa in Italy. All the genomes available for Xylella fastidiosa spp were downloaded from NCBI. A phylogeographic analysis was performed using BEAST. X. fastidiosa strains belonging to X. fastidiosa subsp. pauca and subsp. sandyi have been reported to infect olive trees and coffee plants, respectively. The phylogeographic analysis also revealed and confirmed these two different ways of provenience X. fastidiosa subsp. pauca from Costa Rica and X. fastidiosa subsp sandyi from California Phylogeny have been an important tool to validate and support the recent hypothesis for X. fastidiosa pauca provenience.  相似文献   

3.
4.
AIMS: Detection of Xylella fastidiosa in citrus plants and insect vectors. METHODS AND RESULTS: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay. CONCLUSIONS: The use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.  相似文献   

5.
The recent establishment of Xylella fastidiosa subspecies pauca in the southern Italian region of Apulia threatens agricultural crops and the environment. Olive is an important and widespread ancient crop in Italy and, so far, the most impacted host. The meadow spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae) has been identified as a vector of X. fastidiosa in southern Italy; this species is one of the most common potential vectors in Europe. To generate disease management strategies, data on X. fastidiosa transmission by P. spumarius are necessary. Therefore, we carried out transmission experiments by using field‐collected spittlebugs in 2014 and 2015 (5 and 11 collection dates, respectively), and transferring groups of insects immediately on to recipient plants. Various host plant species were tested: olive, oleander, sweet orange, grapevine and the stone fruit rootstock GF677 (Prunus persica × Prunus amygdalus). Xylella fastidiosa was detected in all the host plants after insect plant access except for grapevine; infections to sweet orange and stone fruit were not systemic. In 2015, estimates of insect X. fastidiosa infectivity were obtained; the number of PCR‐positive P. spumarius on each plant was positively correlated with the plant infection status. The proportion of P. spumarius infected with X. fastidiosa ranged from 25% to 71% during the entire survey period. The number of X. fastidiosa cells detected in P. spumarius heads ranged from 3.5 × 10 to 4.0 × 102 (CFU equivalents), which is lower than that reported for leafhopper vectors in the Americas. These data show that field‐collected P. spumarius have high rates of X. fastidiosa infection and are competent vectors.  相似文献   

6.
Colletotrichum orbiculare infects cucurbits, such as cucumber and melon (Cucumis melo), as well as the model Solanaceae plant Nicotiana benthamiana, by secreting an arsenal of effectors that suppress the immunity of these distinct plants. Two conserved effectors of C. orbiculare, called NLP1 and NIS1, induce cell death responses in N. benthamiana, but it is unclear whether they exhibit the same activity in Cucurbitaceae plants. In this study, we established a new Agrobacterium-mediated transient expression system to investigate the cell death-inducing activity of NLP1 and NIS1 in melon. NLP1 strongly induced cell death in melon but, in contrast to the effects seen in N. benthamiana, mutations either in the heptapeptide motif or in the putative glycosylinositol phosphorylceramide-binding site did not cancel its cell death-inducing activity in melon. Furthermore, NLP1 lacking the signal peptide caused cell death in melon but not in N. benthamiana. Study of the transient expression of NIS1 also revealed that, unlike in N. benthamiana, NIS1 did not induce cell death in melon. In contrast, NIS1 suppressed flg22-induced reactive oxygen species generation in melon, as seen in N. benthamiana. These findings indicate distinct cell death-inducing activities of NLP1 and NIS1 in these two plant species that C. orbiculare infects.  相似文献   

7.
Trypanosoma brucei rhodesiense is one of the causative agents of African Trypanosomiasis. Programmed cell death (PCD) is fundamental in the development, homeostasis and immune mechanisms of multicellular organisms. It has been shown that, other than occurring in multicellular organisms, the PCD phenomenon also takes place in unicellular organisms. In the present study, we have found that under high-density axenic culture conditions, bloodstream form of T. b. rhodesiense depicts a PCD-like phenomenon. We investigated the association of the PCD-like phenomenon with expression of trypanosome alternative oxidase (TAO) under low-temperature stress conditions. We observed that bloodstream form of T. b. rhodesiense did not show any PCD but had up-regulated expression of TAO. Inhibition of TAO by the addition of ascofranone caused the development of PCD in bloodstream T. b. rhodesiense under low-temperature stress, implying that expression of TAO may contribute to the inhibition of PCD.  相似文献   

8.
RXLR effectors encoded by Phytophthora species play a central role in pathogen–plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.  相似文献   

9.
Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades.  相似文献   

10.
Autophagy is a major intracellular process for the degradation of cytosolic macromolecules and organelles in the lysosomes or vacuoles for the purposes of regulating cellular homeostasis and protein and organelle quality control. In complex metazoan organisms, autophagy is highly engaged during the immune responses through interfaces either directly with intracellular pathogens or indirectly with immune signalling molecules. Studies over the last decade or so have also revealed a number of important ways in which autophagy shapes plant innate immune responses. First, autophagy promotes defence‐associated hypersensitive cell death induced by avirulent or related pathogens, but restricts unnecessary or disease‐associated spread of cell death. This elaborate regulation of plant host cell death by autophagy is critical during plant immune responses to the types of plant pathogens that induce cell death, which include avirulent biotrophic pathogens and necrotrophic pathogens. Second, autophagy modulates defence responses regulated by salicylic acid and jasmonic acid, thereby influencing plant basal resistance to both biotrophic and necrotrophic pathogens. Third, there is an emerging role of autophagy in virus‐induced RNA silencing, either as an antiviral collaborator for targeted degradation of viral RNA silencing suppressors or an accomplice of viral RNA silencing suppressors for targeted degradation of key components of plant cellular RNA silencing machinery. In this review, we summarize this important progress and discuss the potential significance of the perplexing role of autophagy in plant innate immunity.  相似文献   

11.
Programmed cell death in plants: distinguishing between different modes   总被引:1,自引:0,他引:1  
Programmed cell death (PCD) in plants is a crucial componentof development and defence mechanisms. In animals, differenttypes of cell death (apoptosis, autophagy, and necrosis) havebeen distinguished morphologically and discussed in these morphologicalterms. PCD is largely used to describe the processes of apoptosisand autophagy (although some use PCD and apoptosis interchangeably)while necrosis is generally described as a chaotic and uncontrolledmode of death. In plants, the term PCD is widely used to describemost instances of death observed. At present, there is a vastarray of plant cell culture models and developmental systemsbeing studied by different research groups and it is clear fromwhat is described in this mass of literature that, as with animals,there does not appear to be just one type of PCD in plants.It is fundamentally important to be able to distinguish betweendifferent types of cell death for several reasons. For example,it is clear that, in cell culture systems, the window of timein which ‘PCD’ is studied by different groups varieshugely and this can have profound effects on the interpretationof data and complicates attempts to compare different researcher'sdata. In addition, different types of PCD will probably havedifferent regulators and modes of death. For this reason, inplant cell cultures an apoptotic-like PCD (AL-PCD) has beenidentified that is fairly rapid and results in a distinct corpsemorphology which is visible 4–6 h after release of cytochromec and other apoptogenic proteins. This type of morphology, distinctfrom autophagy and from necrosis, has also been observed inexamples of plant development. In this review, our model systemand how it is used to distinguish specifically between AL-PCDand necrosis will be discussed. The different types of PCD observedin plants will also be discussed and the importance of distinguishingbetween different forms of cell death will be highlighted. Key words: Apoptosis, apoptosis-like programmed cell death (AL-PCD), Arabidopsis, autophagy, mitochondria, necrosis, programmed cell death (PCD) Received 5 June 2007; Revised 13 September 2007 Accepted 20 September 2007  相似文献   

12.
As a destructive plant pathogen, Phytophthora infestans secretes diverse host-entering RxLR effectors to facilitate infection. One critical RxLR effector, PiAvr3b, not only induces effector-triggered immunity (ETI), which is associated with the potato resistance protein StR3b, but also suppresses pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). To date, the molecular basis underlying such dual activities remains unknown. Based on phylogenetic analysis of global P. infestans isolates, we found two PiAvr3b isoforms that differ by three amino acids. Despite this sequence variation, the two isoforms retain the same properties in activating the StR3b-mediated hypersensitive response (HR) and inhibiting necrosis induced by three PAMPs (PiNpp, PiINF1, and PsXeg1) and an RxLR effector (Pi10232). Using a combined mutagenesis approach, we found that the dual activities of PiAvr3b were tightly linked and determined by 88 amino acids at the C-terminus. We further determined that either the W60 or the E134 residue of PiAvr3b was essential for triggering StR3b-associated HR and inhibiting PiNpp- and Pi10232-associated necrosis, while the S99 residue partially contributed to PTI suppression. Additionally, nuclear localization of PiAvr3b was required to stimulate HR and suppress PTI, but not to inhibit Pi10232-associated cell death. Our study revealed that PiAvr3b suppresses the plant immune response at different subcellular locations and provides an example in which a single amino acid of an RxLR effector links ETI induction and cell death suppression.  相似文献   

13.
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on Nbenthamiana. However, on Ntabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either Nbenthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on Ntabacum, but not on Nbenthamiana. In addition, Ntabacum recognizes more RipAW orthologs than Nbenthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant–pathogen co-evolution.  相似文献   

14.
Programmed cell death (PCD) initiated at the pathogen‐infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER‐localized type IIB Ca2+‐ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N‐ and fungal‐immune receptor Cf9‐mediated PCD, as well as non‐host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein‐induced cell death. The accelerated PCD rescues loss‐of‐resistance phenotype of Rar1, HSP90‐silenced plants, but not SGT1‐silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N‐immune receptor‐mediated PCD. Our results indicate that ER‐Ca2+‐ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response.  相似文献   

15.
The unconventional, lysine-63-linked ubiquitination has been shown to play a central role in regulating human and animal innate and adaptive immunity. By contrast, the role and mechanism of K63-linked ubiquitination in plant biology remain largely unexplored. The tomato (Solanum lycopersicum) Fni3 ubiquitin-conjugating enzyme and its co-factor, Suv ubiquitin E2 variant (Uev) were shown recently to catalyze K63-linked ubiquitination and are essential for protein Fen and other resistance protein-mediated plant immunity. In this study we detected the subcellular localization of Fen, Fni3 and Suv and confirmed the interaction of Fni3 with Suv in tomato protoplasts. Additionally, we identified 2 tomato Uev1 homologs, SlUev1C and SlUev1D, respectively and showed they are not required for Fen-mediated programmed cell death in Nicotiana benthamiana, suggesting Uev homologs play differential role in the cell.  相似文献   

16.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   

17.
Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)‐tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.  相似文献   

18.
19.
Park JA  Kim TW  Kim SK  Kim WT  Pai HS 《FEBS letters》2005,579(20):4459-4464
The very long chain fatty acids (VLCFAs) are synthesized by the microsomal fatty acid elongation system in plants. We investigated cellular function of NbECR putatively encoding enoyl-CoA reductase that catalyzes the last step of VLCFA elongation in Nicotiana benthamiana. Virus-induced gene silencing of NbECR produced necrotic lesions with typical cell death symptoms in leaves. In the affected tissues, ablation of the epidermal cell layer preceded disintegration of the whole leaf cell layers, and disorganized cellular membrane structure was evident. The amount of VLCFAs was reduced in the NbECR VIGS lines, suggesting NbECR function in elongation of VLCFAs. The results demonstrate that NbECR encodes a putative enoyl-CoA reductase and that the NbECR activity is essential for membrane biogenesis in N. benthamiana.  相似文献   

20.
周晓舟  陈国平   《广西植物》2007,27(3):522-526
植物细胞程序化死亡(PCD)是一种由基因控制的、主动的细胞死亡过程,它在植物正常生长发育过程中起着重要作用。发生程序化死亡的植物细胞在形态、生理生化方面表现出一些共性特点和个性特点,该文对这些特点进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号