首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   

2.
Carvacrol has been recognized as an efficient growth inhibitor of food pathogens. However, carvacrol oil is poorly water-soluble and can be oxidized, decomposed or evaporated when exposed to the air, light, or heat. To overcome these limitations, a carvacrol nanoemulsion was developed and its antimicrobial activity against food pathogens evaluated in this study. The nanoemulsion containing 3% carvacrol oil, 9% surfactants (HLB 11) and 88% water, presented good stability over a period of 90 days. In general, the carvacrol nanoemulsion (MIC: 256 µg ml−1 for E. coli and Salmonella spp., 128 µg ml−1 for Staphylococcus aureus and Pseudomonas aeruginosa) exhibited improved antimicrobial activity compared to the free oil. The carvacrol nanoemulsion additionally displayed bactericidal activity against Escherichia coli, P. aeruginosa and Salmonella spp. Therefore, the results of this study indicated that carvacrol oil nanoemulsions can potentially be incorporated into food formulations, wherein their efficacy for the prevention and control of microbial growth could be evaluated.  相似文献   

3.
4.
Candida biofilms are tolerant to conventional antifungal therapeutics and the host immune system. The transition of yeast cells to hyphae is considered a key step in C. albicans biofilm development, and this transition is inhibited by the quorum-sensing molecule farnesol. We hypothesized that fatty acids mimicking farnesol might influence hyphal and biofilm formation by C. albicans. Among 31 saturated and unsaturated fatty acids, six medium-chain saturated fatty acids, that is, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid and lauric acid, effectively inhibited C. albicans biofilm formation by more than 75% at 2 µg ml−1 with MICs in the range 100–200 µg ml−1. These six fatty acids at 2 µg ml−1 and farnesol at 100 µg ml−1 inhibited hyphal growth and cell aggregation. The addition of fatty acids to C. albicans cultures decreased the productions of farnesol and sterols. Furthermore, down-regulation of several hyphal and biofilm-related genes caused by heptanoic or nonanoic acid closely resembled the changes caused by farnesol. In addition, nonanoic acid, the most effective compound diminished C. albicans virulence in a Caenorhabditis elegans model. Our results suggest that medium-chain fatty acids inhibit more effectively hyphal growth and biofilm formation than farnesol.  相似文献   

5.
Shrimp farming has experienced rising costs as a result of disease outbreaks associated with Vibrio spp. Suitable strategies for disease prevention and control are therefore urgently needed. This study aimed to evaluate the antimicrobial effect of Moringa oleifera seed powder against Vibrio cholerae in the rearing water of Pacific white shrimp (Penaeus vannamei) postlarvae. In vitro assays included the determination of minimum inhibitory concentration (MIC) of M. oleifera seed powder against V. cholerae, whereas in vivo assays included the effect of M. oleifera seed powder on bacterial load and water quality parameters in the rearing tanks, as well as its effect on shrimp postlarvae survival. M. oleifera seed powder inhibited the growth of V. cholerae with MIC values of 62·5 µg ml−1. Moreover, seawater pH of treated tanks (8·66) was significantly lower (P < 0·01) than pH of the control tanks (9·02), whereas the visibility of treated tanks (37·08 cm) was significantly higher (P < 0·01) as compared to control tanks (35·37 cm). Likewise, V. cholerae load was significantly reduced (P < 0·01) from 4·7 × 104 to 3·1 × 103 CFU per ml in tanks treated with M. oleifera seed powder. Altogether, this study demonstrates the antimicrobial activity of M. oleifera against V. cholerae in shrimp culture.  相似文献   

6.
The development and world-wide spread of multidrug-resistant (MDR) bacteria have a high concern in the medicine, especially the extended-spectrum of beta-lactamase (ESBL) producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). There are currently very limited effective antibiotics to treat infections caused by MDR bacteria. Peat-soil is a unique environment in which bacteria have to compete each other to survive, for instance, by producing antimicrobial substances. This study aimed to isolate bacteria from peat soils from South Kalimantan Indonesia, which capable of inhibiting the growth of Gram-positive and Gram-negative bacteria. Isolates from peat soil were grown and identified phenotypically. The cell-free supernatant was obtained from broth culture by centrifugation and was tested by agar well-diffusion technique against non ESBL-producing E. coli ATCC 25922, ESBL-producing E. coli ATCC 35218, methicillin susceptible Staphylococcus aureus (MSSA) ATCC 29,213 and MRSA ATCC 43300. Putative antimicrobial compounds were separated using SDS-PAGE electrophoresis and purified using electroelution method. Antimicrobial properties of the purified compounds were confirmed by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In total 28 isolated colonies were recovered; three (25PS, 26PS, and 27PS) isolates produced proteins with strong antimicrobial activities against both reference strains. The substance of proteins from three isolates exerted strong antimicrobial activity against ESBL-producing E. coli ATCC 35,218 (MIC = 2,80 µg/mL (25PS), 3,76 µg/mL (26PS), and 2,41 µg/mL (27PS), and MRSA ATCC 43,300 (MIC = 4,20 µg/mL (25PS), 5,65 µg/mL (26PS), and 3,62 µg/mL (27PS), and also had the ability bactericidal properties against the reference strains. There were isolates from Indonesian peat which were potentials sources of new antimicrobials.  相似文献   

7.
The extraction and characterization of the essential oils (EO) from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus and the determination of their antibacterial and antioxidant activities were achieved. The EO were identified by gas chromatography/mass spectrometry and quantified by gas chromatography using a flame ionization detector. The antibacterial potential against Escherichia coli and Staphylococcus aureus was evaluated by cell susceptibility assays and by scanning electron microscopy. The antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl assay, by β-carotene bleaching and by determining the reducing power. Borneol (36·18%), γ-terpineol (12·66%) and carvacrol (11·07%) were the principal components in the EO from S. montana, and sabinene (49·23%) and α-pinene (13·81%) were found in the EO from M. fragrans. Geranial (59·66%) and neral (38·98%) isomers were the only major components in the EO from C. flexuosus. The EO from S. montana was effective against E. coli, with minimum inhibitory and bactericidal concentrations (MIC and MBC) of 6·25 µl ml−1, whereas bactericidal potential against both was observed for the EO from M. fragrans; MIC = 6·25 µl ml−1 for S. aureus and MBC = 12·5 µl ml−1 for E. coli. A significant protective role on lipid substrates in the β-carotene bleaching assay was seen for the EO from S. montana and M. fragrans. Overall, such EO can be promising agents against pathogenic bacteria and for protecting biomolecules during oxidative stress.  相似文献   

8.
Antibiotic resistance has become a major worldwide priority, and identifying natural antimicrobial compounds may help overcome this problem. In this study, ethanolic extracts of 12 plants commonly used in traditional medicine were tested against two strains of methicillin-resistant Staphylococcus aureus (ATCC 33591 and ATCC 43300) in terms of minimum inhibitory concentrations (MICs). Furthermore, the effect of combining plant extracts with clindamycin antibiotic was also investigated using the checkerboard method. Among the tested plants, Camellia sinensis, Thymus vulgaris, Rosmarinus officinalis and Salvia officinalis exhibited potent inhibitory activity against both strains with MICs ranges (125–500 µg ml−1). Synergistic activity was confirmed for the four plants combined with clindamycin with fractional inhibitory concentration index <0·5. However, no antagonistic activity was found for these combinations. Our findings suggest that using an antibiotics-plants combination might be a successful technique to reduce antibiotic consumption, which would overcome the antibiotics resistance or delay its onset.  相似文献   

9.
Colistin is recognized as a last-resort treatment option against multi-drug resistant bacteria including carbapenem-resistant Enterobacteriaceae (CRE). However, the plasmid-mediated colistin-resistance gene mcr-1 has been reported globally resulting in an increase of colistin-resistant bacteria. A quick and accurate method for determining the pathogen resistance of colistin is therefore crucial in the clinic. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a potential tool forto be applied for antimicrobial susceptibility testing. We compared the growth of Escherichia coli strains in the presence or absence of colistin. Automated analyses of the spectra were performed with a prototype software tool written with package R. Three mcr-1-positive and six mcr-1-negative E. coli were used for establishing the model to obtain the optimal incubation time, the breakpoint concentration of colistin and cut-off of the relative growth (RG) value. The distinction between susceptible and resistant strains was already noticeable after 2 h of incubation. The best separation between the susceptible and resistant strains was achieved at a concentration of 4 µg ml-1 and a relative growth cut-off value of 0.6. Application of the model for the analysis of 128 E. coli isolates, a sensitivity of 97.4% and a specificity of 88.2% were achieved compared with colistin MIC results. The rapid MALDI-TOF MS-based method approach is simple to set-up, uses a short incubation time, and had excellent outcomes with respect to sensitivity and specificity for colistin sensitivity testing in Escherichia coli.  相似文献   

10.

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

  相似文献   

11.
Drug resistance in Candida species has been considerably increased in the last decades. Given the opposition to antifungal agents, toxicity and interactions of the antimicrobial drugs, identifying new antifungal agents seems essential. This study assessed the antifungal effects of nanoparticles (NPs) on the standard strains of Candida albicans and Candida glabrata and determined the expression genes, including ERG3, ERG11 and FKS1. Selenium nanoparticles (Se-NPs) were biosynthesized with a standard strain of C. albicans and approved by several methods including, ultraviolet-visible spectrophotometer, X-ray diffraction technique, Fourier-transform infrared analysis, field-emission scanning electron microscopy and EDX diagram. The antifungal susceptibility testing performed the minimum inhibitory concentrations (MICs) using the CLSI M27-A3 and M27-S4 broth microdilution method. The expression of the desired genes was examined by the real-time PCR assay between untreated and treated by antifungal drugs and Se-NPs. The MICs of itraconazole, amphotericin B and anidulafungin against C. albicans and C. glabrata were 64, 16 and 4 µg ml−1. In comparison, reduced the MIC values for samples treated with Se-NPs to 1 and 0·5 µg ml−1. The results obtained from real-time PCR and analysis of the ∆∆Cq values showed that the expression of ERG3, ERG11 and FKS1 genes was significantly down-regulated in Se-NPs concentrations (P < 0·05). This study's evidence implies biosafety Se-NPs have favourable effects on the reducing expression of ERG3, ERG11 and FKS1 antifungal resistance genes in C. albicans and C. glabrata.  相似文献   

12.
Eight obligately halophilic, euryhaline cyanobacteria from intertidal soil were isolated in artificial seawater nutrients III (ASN‐III) medium. Antimicrobial activity, 16S rRNA gene sequences, phenotypic characters as well as growth and antibiosis in response to variable salinity, temperature, phosphate concentration, and pH were studied. Minimum inhibitory concentrations (MIC) of the extracts against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and multiple drug‐resistant clinical isolates ranged between 0.25 and 0.5 mg · mL−1. Cytotoxicity tests showed 73%–84% human colon adenocarcinoma (HT‐29/C1) cell survival at MIC values, indicating that the extracts were nontoxic. Morphologically, six cyanobacteria were assigned to the Lyngbya‐Phormidium‐Plectonema (LPP) group B, and one each was assigned to Oscillatoria and Synechocystis genera. Glycerol, mannitol, and starch supported better photoheterotrophic growth than simpler mono‐ and disaccharides. No heterocyst formation was observed when grown under nitrogen‐starved conditions. All isolates survived 7‰ salinity, grew at minimum 32‰ salinity, and showed sustained growth throughout 32‰–82‰ salinity but matured poorly in freshwater medium supplemented with 30.0 g · L−1 NaCl. Antimicrobial production occurred only at 32‰ salinity. While four of the eight isolates demonstrated sustained growth at 37°C, maximum antimicrobial activity was obtained at 25°C. All strains showed maximum growth and antimicrobial elaboration at 0.04 g · L−1 phosphate. All isolates thrived at pH 9.5; six grew at pH 4.5, though antimicrobial production occurred only at pH 7.5. Molecular phylogenetic analysis based on 16S rRNA gene sequences of the filamentous isolates validated the previous taxonomic affiliations established on morphological characteristics. This is the first study of antimicrobial‐producing halophilic cyanobacteria from the mangroves.  相似文献   

13.
Microbial resistance to antibiotics affects the control of clinical infections and is a growing concern in global public health. One important mechanism whereby micro-organisms acquire resistance is biofilm formation. This context has led to the investigation of new antimicrobial substances from plants popularly used in folk medicine. In this work, we studied the antimicrobial and antibiofilm activity of Zinnia peruviana roots, ziniolide (major root metabolite) and aerial parts against Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The minimum inhibitory and minimum microbicidal concentration and inhibition of biofilm production was determined. All Z. peruviana extracts showed antimicrobial activity, but that corresponding to the roots was the most active one. The best inhibitory and microbicidal activity was detected against Gram-positive bacteria (0·039–0·078 mg ml−1). The acetonic extract from Z. peruviana leaves showed moderate activity against Gram-positive bacteria (0·625 mg ml−1). Acetonic extract of Z. peruviana flowers showed weak activity (1·25–5 mg ml−1). All the extracts tested showed inhibition of biofilm formation, as well as the ziniolide, however, roots and flowers extracts showed higher antibiofilm activity particularly against Staphylococcus, Listeria and Candida. The extracts tested may be a promising natural alternative for the control of microbial infections.  相似文献   

14.
Abstract

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1?µg ml?1 for griseofulvin and 0.000097-0.25?µg ml?1 for itraconazole and terbinafine. sMIC50 ranges were 2->512?µg ml?1 for griseofulvin and 0.25->64?µg ml?1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.  相似文献   

15.
α-Mangostin-rich extract (AME) exhibited satisfactory inhibitory activities against all tested MRSA strains, with minimum inhibitory concentrations (MICs) of 7·8–31·25 µg ml−1, whereas lawsone methyl ether (LME) and ampicillin revealed weak antibacterial activity with MICs of 62·5–125 µg ml−1. However, the combination of AME and LME showed synergistic effects against all tested MRSA strains with fractional inhibitory concentration index (FICI) values of 0·008–0·009, while the combination of AME and ampicillin, as well as LME and ampicillin produced synergistic effects with FICIs of 0·016–0·257. A time-kill assay against MRSA (DMST 20654 strain) revealed a 6-log reduction in CFU per ml, which completely inhibited bacterial growth for the combinations of AME and LME, AME and ampicillin, and LME and ampicillin at a 8-h incubation, while those against MRSA (2468 strain) were at 10-h incubation. The combination of α-mangostin and LME as well as the combinations of each compound with ampicillin synergized the alteration of membrane permeability. In addition, α-mangostin, LME and ampicillin inhibited the biofilm formation of MRSA. These findings indicated that the combinations of AME and LME or each of them in combination with ampicillin had enhanced antibacterial activity against MRSA. Therefore, these compounds might be used as the antibacterial cocktails for treatment of MRSA.  相似文献   

16.
Following the appearance of several antimicrobial agents to control the spread of infections, two major challenges have emerged: (i) the occurrence and blowout of multiresistant bacteria and the increase of chronic diseases and (ii) difficult-to-eradicate infections. In this study, we tested five benzoylthiourea derivatives for their ability to inhibit and stop bacterial growth and evaluated the possible influence of 1,2,4-triazolyl-benzoylthiourea derivative 4 on the formation and eradication of Staphylococcus aureus biofilms. Benzoylthiourea derivatives 4 , 6 , 10 , 11 and 13 were obtained in one or two steps with low cost and subjected to tests to identify their minimum inhibitory concentration (MIC) and minimum bactericidal concentration. In vitro tests were also performed to assess their effects on biofilm formation and in preformed biofilms and scanning electron microscopy was used to visualize the effects on biofilm formation. The 1,2,4-triazolyl-benzoylthiourea derivative 4 showed bacteriostatic activity against the S. aureus HU25 clinical strain with an MIC of 16 µg ml−1, which is below the toxic concentration (at 2500 µg ml−1, 62·25% of the cells remained viable). Compound 4 also effectively prevented biofilm formation at the three subinhibitory concentrations tested (1/2 MIC, 1/4 MIC and 1/8 MIC) as confirmed by scanning electron microscopy. For breakdown of formed biofilms, the main influence was at a subinhibitory concentration (1/2 MIC). These findings make compound 4 a strong candidate for studies on the development of new antimicrobial and antibiofilm agents.  相似文献   

17.
Elimination of inoculated Vibrio cholerae (≥107 cells ml−1) within a brackish water bacteria assemblage (Mecoacán Lagoon, State of Tabasco, Mexico) was studied in laboratory microcosms with filtration‐fractionated water. Feeding of a ciliate, Cyclidium glaucoma was evaluated using fluorescently labelled V. cholerae o1. Even though V. cholerae was not exploited as the major food source, ciliates were able to eliminate it efficiently. An addition of chitin directly supported the growth of bacteria, although not so much of V. cholerae, and indirectly the growth of the protistan assemblage. Generally, the changes in a bacterial assemblage structure were the most important in V. cholerae elimination.  相似文献   

18.
Aims: To develop an antimicrobial bottle coating effective at inhibiting the growth of Salmonella in liquid egg albumen (egg white) and reduce the risk of human Salmonellosis. Methods and Results: Four‐ounce glass jars were coated with a mixture of polylactic acid (PLA) polymer and antimicrobial compounds containing 100–500 μl allyl isothiocyanate (AIT), 250 mg nisin, 250 mg zinc oxide nanoparticles per jar or their combinations. The coated jars contained 100 ml of liquid egg white (LEW) inoculated with a three‐strain Salmonella enterica ssp. enterica cocktail at populations of 103 or 107 CFU ml?1 and stored at 10°C for 28 days. The PLA coating with 500 μl AIT completely inactivated 3 and 7 log CFU ml?1 of Salmonella after 7 and 21 days of storage, respectively. The PLA coating with 200 μl AIT in combination with 250 mg nisin reduced Salmonella populations to an undetectable level (<10 CFU ml?1) after 21 days of storage. Conclusions: PLA coatings containing AIT alone or in combination with nisin effectively inactivated salmonellae in LEW. Significance and Impact of the Study: This study demonstrated the commercial potential of applying the antimicrobial bottle coating method to liquid eggs and possibly other fluid food products.  相似文献   

19.
The antibacterial activity of a Cinnamomum cassia essential oil (EO) and of its main component trans-cinnamaldehyde (90% w/w) was examined against five Listeria monocytogenes strains. The minimal inhibitory concentrations (MICs) of Ccassia EO against the five Lmonocytogenes strains were identical (250 µg ml−1), while the minimal bactericidal concentrations (MBCs) ranged between 800 and 1200 µg ml−1. In order to study if this EO and trans-cinnamaldehyde altered the five strains at the membrane level, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured in presence of different concentrations (1/2MIC, MIC, 2MIC) of these antibacterial agents. A concentration-dependent increase of fluorescence anisotropy of DPH in their presence reflecting a rigidification of the membrane was observed for the five strains. This modification of the membrane fluidity was associated with a perturbation of the selective membrane permeability, as a perturbation of the gradient between intracellular and extracellular pH was also observed.  相似文献   

20.
Bacillus subtilis was used for biogenic of silver nanoparticles. Characterization of the prepared silver nanoparticles was done by UV–Vis spectroscopy, Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). The particle size of the prepared nanoparticles ranges from 3 to 20 nm with spherical or roughly spherical forms. The antimicrobial efficacy of the produced nanoparticles was investigated against five strains of multidrug resistant microorganisms including: Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Klebsiella. pneumoniae, Escherichia coli and Candida albicans tested as yeast. During this study, the minimum inhibitory concentrations (MICs) and the minimum lethal concentrations (MLCs) of synthesized silver nanoparticles were detected using selected strains of the genus Bacillus by a broth dilution method. The rate of MIC of the prepared silver nano-particles versus the investigated clinical isolates exhibit a massive anti-microbial efficacy; (230 µgml−1) for MRSA; 180 for Staphylococcus epidermidis, 200 for Escherichia coli and 100 µgml−1 for Candida albicans. On the other hand, the lowest anti-microbial efficacy (300 µgml−1) was appeared for Klebsiella pneumonia. The obtained results demonstrated the effectiveness of the biogenic nanoparticles and the possibility of using them as a new method in combating infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号