首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Cebus Apella (C. apella) is a species of Nonhuman Primate (NHP) used for biomedical research because it is phylogenetically similar and shares anatomical commonalities with humans. Here, the gut microbiota of three C. apella were examined in the different regions of the intestinal tract. Using metagenomics, the gut microbiota associated with the luminal content and mucus layer for each intestinal region was identified, and functionality was investigated by quantifying the levels of short chain fatty acids (SCFAs) produced. The results of this study show a high degree of similarity in the intestinal communities among C. apella subjects, with multiple shared characteristics. First, the communities in the lumen were more phylogenetically diverse and rich compared to the mucus layer communities throughout the entire intestinal tract. The small intestine communities in the lumen displayed a higher Shannon diversity index compared to the colon communities. Second, all the communities were dominated by aero‐tolerant taxa such as Streptococcus, Enterococcus, Abiotrophia, and Lactobacillus, although there was preferential colonization of specific taxa observed. Finally, the primary SCFA produced throughout the intestinal tract was acetic acid, with some propionic acid and butyric acid detected in the colon regions. The small intestine microbiota produced significantly less SCFAs compared to the communities in the colon. Collectively, these data provide an in‐depth report on the composition, distribution, and SCFA production of the gut microbiota along the intestinal tract of the C. apella NHP animal model.  相似文献   

2.
3.
4.
Although fish immunology has progressed in the last few years, the contribution of the normal endogenous microbiota to the overall health status has been so far underestimated. In this context, the establishment of a normal or protective microbiota constitutes a key component to maintain good health, through competitive exclusion mechanisms, and has implications for the development and maturation of the immune system. The normal microbiota influences the innate immune system, which is of vital importance for the disease resistance of fish and is divided into physical barriers, humoral and cellular components. Innate humoral parameters include antimicrobial peptides, lysozyme, complement components, transferrin, pentraxins, lectins, antiproteases and natural antibodies, whereas nonspecific cytotoxic cells and phagocytes (monocytes/macrophages and neutrophils) constitute innate cellular immune effectors. Cytokines are an integral component of the adaptive and innate immune response, particularly IL-1 beta, interferon, tumor necrosis factor-alpha, transforming growth factor-beta and several chemokines regulate innate immunity. This review covers the innate immune mechanisms of protection against pathogens, in relation with the installation and composition of the normal endogenous microbiota in fish and its role on health. Knowledge of such interaction may offer novel and useful means designing adequate therapeutic strategies for disease prevention and treatment.  相似文献   

5.
《Cell host & microbe》2022,30(5):726-739.e3
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

6.
在长期的共同进化中,肠道菌群与其宿主形成了紧密的联系,为宿主提供了许多有益的作用。作为一种社会性昆虫,蜜蜂的生活习性为其肠道菌群提供了良好而稳定的传播途径,因此,蜜蜂与其肠道菌群形成了一种紧密的互惠互利共生关系。近年来,随着对蜜蜂肠道菌群了解的不断加深,对蜜蜂肠道菌群功能的研究也不断深入,大量研究表明蜜蜂的肠道菌群在宿主食物的消化代谢、宿主免疫的激活和抵抗致病菌、调节宿主生理等方面都有着重要的作用,同时破坏肠道菌群的稳定对蜜蜂的健康有着明显的负面影响。本文对近年来西方蜜蜂肠道菌群功能研究进行了总结,旨在为进一步深入探索蜜蜂肠道菌群与其宿主的相互作用及在养蜂生产上应用肠道菌群防控疾病提供参考。  相似文献   

7.
The animal gut commonly contains a large reservoir of symbiotic microbes. Although these microbes have obvious functions in digestion and immune defence, gut microbes can also affect behaviour. Here, we explore whether gut microbiota has a role in kin recognition. We assessed whether relatedness, familiarity and food eaten during development altered copulation investment in three species of Drosophila with diverse ecologies. We found that a monandrous species exhibited true kin recognition, whereas familiarity determined kin recognition in a species living in dense aggregations. Finally, in a food generalist species, food eaten during development masked kin recognition. The effect of food type on copulation duration, in addition to the removal of this effect via antibiotic treatment, suggests the influence of bacteria associated with the gut. Our results provide the first evidence that varied ecologically determined mechanisms of kin recognition occur in Drosophila, and that gut bacteria are likely to have a key role in these mechanisms.  相似文献   

8.
《Cell host & microbe》2022,30(11):1630-1645.e25
  1. Download : Download high-res image (213KB)
  2. Download : Download full-size image
  相似文献   

9.
Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community–host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to ‘fingerprint'' microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography–mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota''s metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest ‘personalized'' aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host.  相似文献   

10.
11.
12.
蜜蜂和熊蜂是重要的传粉昆虫, 对农业生产及生态平衡的维持具有重要作用。近年来, 研究发现蜜蜂及熊蜂肠道内含有大量微生物, 其组成简单、特异。正常的肠道微生物群落对蜜蜂的生长、激素调节、致病菌抵抗等具有重要作用。随着高通量测序的发展, 研究者们也可快速获得传粉蜂肠道微生物组成, 这给生物多样性和物种保护及蜂类健康等的研究带来了便捷。但是由于蜜蜂和熊蜂肠道微生物群落均由特殊菌种组成, 目前的细菌16S rRNA数据库无法对其进行准确的分类, 并且部分东方蜜蜂(Apis cerana)特有的肠道微生物菌种缺乏16S rRNA序列信息。本文从来源于5个不同省份的东方蜜蜂肠道中分离得到在东方蜜蜂中普遍含有的Apibacter菌属纯菌, 获取其全长16S rRNA序列, 并对目前蜜蜂和熊蜂肠道的5个核心菌种的分类进行了综述, 对其分类和命名进行了修正。根据蜜蜂肠道微生物的明确分类, 在目前常用的SILVA细菌分类数据库基础之上对其进行了命名及分类优化, 并加入东方蜜蜂中普遍含有的Apibacter序列, 从而获得了优化数据库Bee Gut Microbiota-Database (BGM-Db)。通过1组东方蜜峰及1组西方蜜蜂(Apis mellifera)的肠道菌群高通量测序结果, 分析不同数据库的表现, 我们发现相比于SILVA和Ribosomal Database Project (RDP), BGM-Db对蜜蜂肠道16S rRNA高通量测序短序列实现了菌种级别的分类, 分辨率更高。  相似文献   

13.
Propionate is produced in the human large intestine by microbial fermentation and may help maintain human health. We have examined the distribution of three different pathways used by bacteria for propionate formation using genomic and metagenomic analysis of the human gut microbiota and by designing degenerate primer sets for the detection of diagnostic genes for these pathways. Degenerate primers for the acrylate pathway (detecting the lcdA gene, encoding lactoyl-CoA dehydratase) together with metagenomic mining revealed that this pathway is restricted to only a few human colonic species within the Lachnospiraceae and Negativicutes. The operation of this pathway for lactate utilisation in Coprococcus catus (Lachnospiraceae) was confirmed using stable isotope labelling. The propanediol pathway that processes deoxy sugars such as fucose and rhamnose was more abundant within the Lachnospiraceae (based on the pduP gene, which encodes propionaldehyde dehydrogenase), occurring in relatives of Ruminococcus obeum and in Roseburia inulinivorans. The dominant source of propionate from hexose sugars, however, was concluded to be the succinate pathway, as indicated by the widespread distribution of the mmdA gene that encodes methylmalonyl-CoA decarboxylase in the Bacteroidetes and in many Negativicutes. In general, the capacity to produce propionate or butyrate from hexose sugars resided in different species, although two species of Lachnospiraceae (C. catus and R. inulinivorans) are now known to be able to switch from butyrate to propionate production on different substrates. A better understanding of the microbial ecology of short-chain fatty acid formation may allow modulation of propionate formation by the human gut microbiota.  相似文献   

14.
15.
[目的]本文探究了3种室温保存剂和-80℃C冷冻保存对粪便样本中菌群结构的影响,为大规模、标准化的采样提供参考.[方法]本研究采集了5名健康志愿者的新鲜粪便作为测试样本,采用4种不同的保存方式保存:DETs室温保存、GITC室温保存、RNAlater室温保存和-80℃冷冻保存,在保存0、1、3、7、14、28 d后,采...  相似文献   

16.
17.
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.  相似文献   

18.
肺部菌群及肠道菌群与肺癌密切相关,研究发现与健康人群相比肺癌患者的肺部及肠道菌群发生失调,即菌群组成结构发生显著改变。随着“肠-肺轴”概念的提出,肺部及肠道菌群在人体内的紧密联系越发受到重视,因此关于肺部及肠道菌群的研究对于阐明肺癌的发生发展机制有重要的指引作用。文中综述了肺癌患者肺部及肠道菌群的组成特点及可能的互作机制,强调了肠-肺轴中免疫系统的重要性,最后总结了肺部及肠道菌群对肺癌临床治疗的影响,并对肺部及肠道菌群可作为肺癌早期诊断与治疗的新颖靶点进行了展望。  相似文献   

19.
掌握海洋生物的营养生态位特征及其应对环境变化的响应机制,对于评估渔业和气候变化对海洋生态系统功能的影响至关重要.茎柔鱼(Dosidicus gigas)是东太平洋重要的渔业经济物种,在生态系统中具有承上启下的重要生态作用.在气候变化的大背景下,掌握茎柔鱼应对气候变化的响应过程将有利于合理把控其资源状况.本研究采用稳定同...  相似文献   

20.
[目的]探究广东本地及移民学龄儿童的饮食结构及肠道菌群分布的差异.[方法]以广东深圳为采样点,随机抽样选取48名广东本地儿童和34名移民儿童,进行膳食问卷调查和晨便采集.采用Mann-Whitney U test分析本地及移民儿童饮食因子摄入频率的差异,并使用Illumina Miseq高通量测序技术对儿童的肠道菌群进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号