首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.  相似文献   

2.
细菌生物膜研究技术   总被引:22,自引:0,他引:22  
细菌生物膜是细菌生长过程中为适应生存环境而在固体表面上生长的一种与游走态细胞相对应的存在形式。只要条件允许,绝大多数细菌都可以形成生物膜。一旦形成了生物膜细菌就具有极强的耐药性,在医疗、食品、工业、军事等诸多领域给人类社会带来了严重的危害,造成巨大的经济损失。因此,细菌生物膜已成为全球关注的重大难题,也是目前科学界研究的前沿和热点。本文结合细菌生物膜研究技术的最新进展,重点介绍了几种常用生物膜发生装置及检测量化技术,并对其原理及优缺点进行了讨论。  相似文献   

3.
目的 分析应用糖皮质激素进行鼻腔冲洗对慢性鼻窦炎(CRS)患者鼻腔菌群多样性及生物膜的影响。 方法 将2018年1月至2018年6月于我院治疗的40例慢性鼻窦炎患者随机分成两组,每组各20例,一组给予0.9%氯化钠注射液进行鼻腔冲洗(NS组),另一组给予0.9%氯化钠注射液及布地奈德进行鼻腔冲洗(NS+BUD组),对两组患者治疗前后的菌群结构差异、多样性及细菌生物膜生成情况进行比较。 结果 治疗前两组患者菌群多样性指标(Chao1指数、Ace指数、Simpson指数及Shannon指数)比较,差异均无统计学意义(均P>0.05),治疗后两组患者的Chao1指数、Ace指数及Shannon指数均明显下降(均P结论 应用糖皮质激素对慢性鼻窦炎患者进行鼻腔冲洗可降低患者鼻腔微生物多样性,减少菌群的异常增殖,降低主要致病菌的生物膜表达,提高临床疗效。  相似文献   

4.
一氧化氮(NO)是一种气体信号分子,具有调节血管张力、引起肿瘤细胞凋亡和减缓植物成熟等功能。最新研究发现,NO可以通过限制菌体对抗生素药物的摄入等保护细菌,但高浓度的NO对细菌又具有杀灭作用;与此同时NO通过双分子系统、c-di-GMP和群体感应等影响细菌生物膜的形成,但细菌种类不同NO的影响效果也不同。本文主要对NO在细菌抗菌机理和生物膜形成的分子作用等进行综述,同时,也对NO研究发展的新方向进行了展望。  相似文献   

5.
Deposition rates of Pseudomonas putida and Hyphomicrobium ZV620 onto glass and biofilm surfaces were quantified. Both species deposited to glass at a much slower rate than to biofilm. A definite bias by depositing cells for biofilms of their own species was evident in the highest attachment rates observed in this study.  相似文献   

6.
全球农田土壤污染日趋严重。重金属、农药、微塑料作为常见的土壤污染物,已对农田生态系统与粮食安全造成严重威胁。细菌生物膜(bacterial biofilm,BF)作为分布于细菌表面的多组分聚集体,近年来已被证明在环境保护领域具有较高的应用价值。本文主要介绍了细菌生物膜的组成和功能,并对近年来细菌及其生物膜在重金属、有机物污染土壤修复中的应用及机理进行综述,展望生物膜群落结构在污染土壤中的修复潜力,以期深入理解细菌生物膜的关键作用,为挖掘更多细菌生物膜在环境保护方面的应用潜力提供理论指导。  相似文献   

7.
细菌生物被膜的形成与其致病性、耐药性密切相关,在许多由细菌导致的慢性、亚慢性感染中发挥着重要作用。动物模型广泛应用于细菌生物被膜相关感染的研究中,为其致病机理和控制策略的探究提供了强有力的科学工具。因此,本文系统阐述了哺乳类(鼠、兔、猪等)和非哺乳类(黑腹果蝇、斑马鱼、秀丽隐杆线虫等)动物模型在细菌生物被膜相关研究中的应用,并对动物模型在细菌生物被膜研究中的应用前景进行了展望,以期为研究由生物被膜导致的相关感染而选择理想动物模型提供理论支撑,从而对生物被膜感染导致的潜在危害进行防控。  相似文献   

8.
Biofilm development on mineral surfaces and related changes in surface reactivity were studied using batch and flow through experiments. An artificial groundwater was used as the primary nutrient medium, Pseudomonas aeruginosa (PAO1) was the model microbial organism and ‘mineral’ surfaces were kept as simple as possible by using glass or a polished quartz tile. Experiments were also completed with very low concentrations (100 mg l?1) of iron, Fe2+ , in the solution. In situ confocal laser scanning microscopy of developing colonies during the live growth phase, and of thick, mature biofilms, revealed only sporadic coverage of biofilm cells and associated polymers at the ‘mineral–microbe interface’. Imaging and analysis of biofilm-conditioned surfaces doped with Fe2+ -rich solutions allowed the locus and form of Fe-rich mineral precipitation to be determined and show that biological surface components can cause mineral precipitation from dilute dissolved species which might otherwise remain in solution.  相似文献   

9.
Biofilm formation can cause refractory urinary tract infections (UTIs) in dogs; however, minimum biofilm eradication concentrations (MBECs) of veterinary drugs against canine uropathogens remain to be investigated. In this study, the MBECs of orbifloxacin (OBFX), trimethoprim‐sulfamethoxazole (TMS) and amoxicillin/clavulanate (ACV) over different time periods for treatment of canine uropathogenic Escherichia coli (n = 10) were determined. The MBECs of OBFX for other bacterial uropathogens, including Staphylococcus pseudintermedius (n = 5), Pseudomonas aeruginosa (n = 5), Klebsiella pneumoniae (n = 5) and Proteus mirabilis (n = 5) were also determined. Minimum inhibitory concentrations (MICs) were identified for all strains by broth microdilution, and MBECs were determined at 24, 72, and 168 hr using the Calgary biofilm method. The 24 hr MBECs of OBFX, TMS and ACV for the E. coli strains were significantly higher than the MICs (P < 0.05), and the 72 and 168 hr MBECs were significantly lower than those at 24 hr (P < 0.05). In addition, the 24 hr OBFX MBECs for the four other uropathogens were significantly higher than the corresponding MICs (P < 0.05). The 72 and/or 168 hr OBFX MBECs for S. pseudintermedius, K. pneumoniae and P. mirabilis were significantly lower than the 24 hr concentrations (P < 0.05), whereas for P. aeruginosa, no significant difference was found between any of the MBECs (P > 0.05). These data indicate that the administration period and uropathogenic bacterial species are important factors affecting the efficacy of OBFX treatment of biofilm‐related UTIs in dogs.  相似文献   

10.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   

11.
郑金伟  袁权  夏宁邵 《微生物学报》2019,59(8):1437-1451
尽管预防性疫苗显著减少了乙型肝炎病毒(hepatitis B virus,HBV)新发感染,但目前全球仍有超过2.4亿慢性HBV感染者,其中每年因HBV感染相关的终末肝病和肝癌引起的死亡人数高达68万。目前用于慢性乙型肝炎(chronic hepatitis B,CHB)治疗的抗病毒药物包括干扰素和核苷/核苷酸类似物两大类,但均难以实现理想的临床治疗终点,即乙肝表面抗原(HBsAg)阴转或血清学转换。针对CHB患者尚未被满足的巨大医疗需求,国内外团队正在针对HBV生活周期的各个关键步骤以及潜在的宿主因子,尝试研发更为有效的CHB治疗药物,本文简要综述了当前处于临床开发阶段以及部分临床前阶段的CHB候选药物研发进展。  相似文献   

12.
Riverine biofilms remain one of the least-studied habitats despite the significant increase in the examination of aquatic microbial communities in recent years. In this study, the dynamics of epilithic biofilm communities native on rocks from a low-order upland stream were examined over a period of 3 years. Spatial and temporal variations in bacterial communities were assessed using terminal restriction fragment length polymorphism, based on analysis of the 16S rRNA gene. In total, 108 epilithic biofilm samples were analysed and 170 different ribotypes were detected. A strong temporal gradient in ribotype composition was noticed, especially between samples collected in 2001 and those collected in 2002 and 2003, most likely reflecting interannual differences in weather conditions, such as temperature. A spatial gradient in ribotype composition, from upstream sites to the low-lying sites, was also evident and interpreted as an environmental variation gradient along the river course. Distinct biofilm communities consistently occurred at the first site along the river, which was significantly correlated to low pH. Temporal factors explained the highest degree of variation within the epilithic biofilms. Recurrent blooms of certain bacteria were noted within the system. Phylogenetic relationships of bacteria at one point in the river were determined using a cloning and sequencing approach, with Alphaproteobacteria dominating the community, followed by Cyanobacteria, Bacteroidetes and Betaproteobacteria.  相似文献   

13.
Biofilm formed on carbon steel by various species of bacterial cells causes serious problems such as corrosion of steel, choking of flow in the pipe, deterioration of the heat-transfer efficiency, and so on. Cathodic protection is known to be a reliable method for protecting carbon steel from corrosion. However, the initial attachment of bacteria to the surface and the effects of cathodic protection on bacterial viability in the biofilm have not been clarified. In this study, cathodic protection was applied to an artificial biofilm containing Pseudomonas aeruginosa (PAO1), a biofilm constituent, on carbon steel. The aims of this study were to evaluate the inhibition effect of cathodic protection on biofilm formation and to reveal the inhibition mechanisms. The viability of PAO1 in artificial biofilm of 5 mm thickness on cathodically protected steel decreased to 1% of the initial cell concentration. Analysis of pH distribution in the artificial biofilm by pH microelectrode revealed that pH in proximity to carbon steel increased to approximately 11 after cathodic protection for 5 h. Moreover, 99% of region in the artificial biofilm was under the pH conditions of over nine. A simulation of pH profile was shown to correspond to experimental values. These results indicate cells in the artificial biofilm were killed or damaged by cathodic protection due to pH increase.  相似文献   

14.
The community composition of total bacteria and ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment was characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Sampling was performed in February and in July. 16S rRNA gene clone libraries revealed 13 bacterial divisions. At both sampling dates, the majority of clone sequences were related to the Alpha- and Betaproteobacteria. A minor proportion belonged to the following groups: Gammaproteobacteria, Deltaproteobacteria, Nitrospira, Firmicutes, Acidobacteria, Verrucomicrobia, Actinobacteria, Planctomycetes, Chloroflexi, Gemmatimonadetes and the Cytophaga-Flavobacterium-Bacteroides group. Some sequences related to bacteria owning high potential metabolic capacities were detected in both samples, such as Rhodobacter-like rRNA gene sequences. Surveys of cloned amoA genes from the two biofilm samples revealed ammonia-oxidizing bacterial sequences affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage. An unknown Nitrosomonas group of amoA gene sequences was also detected.  相似文献   

15.
Enterococci may survive in adverse environments including the human body where bacteriocins, antibiotics, iron-limitation and immune response represent stressing conditions for bacteria that cause division block. In those conditions, bacteria present in the human body would hardly be in an exponentially growing phase but would mostly be in physiological states such as starvation or the viable but nonculturable (VBNC) state. The possibility that the starved and VBNC bacteria can maintain their ability to adhere to living and inanimate substrates is the first mandatory step for them potentially to cause an infection process. In this study it is shown that starved and stationary enterococcal cells are able to form biofilms on plastic material albeit with reduced efficiency as compared to growing cells. Moreover, although VBNC enterococcal forms are not capable of forming biofilms, Enterococcus faecalis and other enterococcal species of medical interest maintain their ability to synthesize the polymeric matrix for a limited period of time under adverse environmental conditions. The data presented, together with those regarding the maintenance of the division recovery potential already proved in nonculturable bacteria, further support the possibility for the VBNC and other nondividing bacterial forms to have a role as infectious agents and to constitute a risk to human health.  相似文献   

16.
The ability of a natural stabilizing and reducing agent on the synthesis of silver nanoparticles (Ag NPs) was explored using a rapid and single-pot biological reduction method using Nocardiopsis sp. GRG1 (KT235640) biomass. The UV–visible spectral analysis of Ag NPs was found to show a maximum absorption peak located at a wavelength position of ∼422 nm for initial conformation. The major peaks in the XRD pattern were found to be in excellent agreement with the standard values of metallic Ag NPs. No other peaks of impurity phases were observed. The morphology of Ag NPs was confirmed through TEM observation, demonstrating that the particle size distribution of Ag NPs entrenched in spherical particles is in a range between 20 and 50 nm. AFM analysis further supported the nanosized morphology of the synthesized Ag NPs and allowed quantifying the Ag NPs surface roughness. The synthesized Ag NPs showed significant antibacterial and antibiofilm activity against biofilm positive methicillin-resistant coagulase negative Staphylococci (MR-CoNS), which were isolated from urinary tract infection as determined by spectroscopic methods in the concentration range of 5–60 µg/ml. The inhibition of biofilm formation with coloring stain was morphologically imaged by confocal laser scanning microscopy (CLSM). Morphological alteration of treated bacteria was observed by SEM analysis. The results clearly indicate that these biologically synthesized Ag NPs could provide a safer alternative to conventional antibiofilm agents against uropathogen of MR-CoNS.  相似文献   

17.

This study has investigated the relationship between bacterial biofilms and the attachment of zoospores of the green macroalga Enteromorpha. Zoospore attachment to glass slides was enhanced in the presence of a bacterial biofilm assemblage, and the number attaching increased with the number of bacteria present. Zoospores also attached to control surfaces, but at lower numbers; glass surfaces conditioned in autoclaved seawater had the same number of zoospores attached as new glass surfaces. The spatial relationship between bacterial cells and attached zoospores was quantified by image analysis. The hypothesis tested was that zoospores attached preferentially to, or in the very close vicinity of, bacterial cells. Spatial microscopic analysis showed that more bacteria were covered by zoospores than would be expected if zoospore attachment was a random process and zoospores appeared to attach to bacterial clusters. The most likely explanation is that zoospores are attracted to bacterial cells growing on surfaces and the presence of a bacterial biofilm enhances their settlement. The possibility is discussed that Enteromorpha zoospores respond to a chemical signal produced by bacteria, i.e. that there may be prokaryote‐eukaryote cell signalling.  相似文献   

18.
硫酸盐还原菌(sulfate-reducing bacteria,SRB)广泛分布于高温、高压及高盐的石油油藏中,在油藏硫循环中起主导作用。SRB能在油藏生物膜内生长,有微量低分子有机酸时利用硫酸盐为电子受体并将其还原成硫化氢。硫化氢会腐蚀管道,导致原油泄露等其他安全问题,每年造成的经济损失超过7 000亿元。本文首先总结了油藏生物膜内微生物菌群多样性,分析了生物膜内SRB及其相关菌群的协同腐蚀机理;然后讨论了高温油藏SRB介导的硫氮氢生物地球化学循环过程、胞外电子传递机制及其腐蚀作用,并通过几个高温油藏SRB生物膜内腐蚀的现场案例进一步阐明了SRB的腐蚀机制。在此基础上,提出了应对高温油藏生物膜内SRB腐蚀的生物纳米防治策略,这为高温油藏管道防腐提供了新思路。  相似文献   

19.
In order to investigate biofouling problems, the fundamental behaviors of initial bacterial adhesion and biofilm development on four different nanofiltration (NF) membranes were evaluated using Pseudomonas aeruginosa PAO1 as a model bacterial strain. Initial cell adhesion was considerably higher on an aromatic polyamide-based NF membrane with a hydrophobic and rough surface, whereas cell aggregation on a polypiperazine-based NF membrane with a relatively hydrophilic and smooth surface was lower. Moreover, significant differences in the structural heterogeneity of the biofilms were observed among the four NF membranes. This study shows that the surface roughness and hydrophobicity of a membrane play an important role in determining initial cell adhesion, aggregation and favorable localization sites for colony formation. In addition, it was found that biofilm development was strongly influenced by the surface morphology of a membrane.  相似文献   

20.
Phosphoglucosamine mutase (EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. The gene (glmM) of Escherichia coli encoding the enzyme has been identified previously. We have now identified a glmM homolog in Streptococcus gordonii, an early colonizer on the human tooth and an important cause of infective endocarditis, and have confirmed that the gene encodes phosphoglucosamine mutase by assaying the enzymatic activity of the recombinant GlmM protein. Insertional glmM mutant of S. gordonii did not produce GlmM, and had a growth rate that was approximately half that of the wild type. Morphological analyses clearly indicated that the glmM mutation causes marked elongation of the streptococcal chains, enlargement of bacterial cells, and increased roughness of the bacterial cell surface. Furthermore, the glmM mutation reduces biofilm formation and increases sensitivity to penicillins relative to wild type. All of these phenotypic changes were also observed in a glmM deletion mutant, and were restored by the complementation with plasmid-borne glmM. These results suggest that, in S. gordonii, mutations in glmM appear to influence bacterial cell growth and morphology, biofilm formation, and sensitivity to penicillins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号