首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The ChlH gene coding the H subunit of magnesium chelatase, an enzyme involved in chlorophyll biosynthesis, was silenced in Nicotiana benthamiana plants by infection with tobacco mosaic virus vectors (pTMV-30b) containing 67, 214 or 549 nt long ChlH inserts. Silencing of the nuclear ChlH gene induced a chimeric phenotype with green and yellow/white leaves associated with alterations of chloroplast shape and ultrastructure. The symptoms became first evident around veins of young leaves, and only later in the mesophyll tissues. The efficiency of gene silencing was not dependent on the insert orientation, but was strongly correlated with the size of the ChlH insert, providing a flexible method to modulate the level of gene suppression. Silencing efficiency seemed to be strongly dependent on endogenous ChlH mRNA level of the target tissue. Silencing of the ChlH gene with the longest fragment of 549 nt also lowered the accumulation of ChlD and chlorophyll synthetase mRNAs, i.e. other genes involved in chlorophyll biosynthesis.  相似文献   

2.
Soybean [Glycine max (L.) Merr.] PI486355 is resistant to all the identified strains of soybean mosaic virus (SMV) and possesses two independently inherited resistance genes. To characterize the two genes, PI486355 was crossed with the susceptible cultivars Lee 68 and Essex and with cultivars Ogden and Marshall, which are resistant to SMV-G1 but systemically necrotic to SMV-G7. The F2 populations and F23 progenies from these crosses were inoculated with SMV-G7 in the greenhouse. The two resistance genes were separated in two F34 lines, LR1 and LR2, derived from Essex x PI486355. F1 individuals from the crosses of LR1 and LR2 with Lee 68, Ogden, and York were tested with SMV-G7 in the greenhouse; the F2 populations were tested with SMV-G1 and G7. The results revealed that expression of the gene in LR1 is gene-dosage dependent, with the homozygotes conferring resistance but the heterozygotes showing systemic necrosis to SMV-G7. This gene was shown to be an allele of the Rsv1 locus and was designated as Rsv1-s. It is the only allele identified so far at the Rsv1 locus which confers resistance to SMV-G7. Rsv1-s also confers resistance to SMV-G1 through G4, but results in systemic necrosis with SMV-G5 and G6. The gene in LR2 confers resistance to strains SMV-G1 through G7 and exhibits complete dominance. It appears to be epistatic to genes at the Rsv1 locus, inhibiting the expression of the systemic necrosis conditioned by the Rsv1 alleles. SMV-G7 induced a pin-point necrotic reaction on the inoculated primary leaves in LR1 but not in LR2. The unique genetic features of the two resistance genes from PI486355 will facilitate their proper use and identification in breeding and contribute to a better understanding of the interaction of SMV strains with soybean resistance genes.  相似文献   

3.
4.
Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1–SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2-derived F3 (F2:3) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3K, LOC100526921, and LOC100812666. The recombinant RSC3K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.  相似文献   

5.
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non‐segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non‐cytopathically in the cell nucleus, leading to establishment of long‐lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G ) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non‐transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M ) and G genes in the genome, is reported. rBoDV‐ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG‐GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG‐GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG‐GFP was also demonstrated. These findings indicate that the rBoDV ΔMG‐based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.
  相似文献   

6.
7.
8.
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase ( CHS ) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase ( F3'H ) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.  相似文献   

9.
10.
11.
12.
We have constructed an African cassava mosaic virus (ACMV) based gene-silencing vector as a reverse genetics tool for gene function analysis in cassava. The vector carrying a fragment from the Nicotiana tabacumsulfur gene (su), encoding one unit of the chloroplast enzyme magnesium chelatase, was used to induce the silencing of the cassava orthologous gene resulting in yellow–white spots characteristic of the inhibition of su expression. This result suggests that well developed sequence databases from model plants like Arabidopsis thaliana, Nicotiana benthamiana, N. tabacum, Lycopersicon esculentum and others could be used as a major source of information and sequences for functional genomics in cassava. Furthermore, a fragment of the cassava CYP79D2endogenous gene, sharing 89% homology with CYP79D1endogenous gene was inserted into the ACMV vector. The resultant vector was inducing the down regulation of the expression of these two genes which catalyze the first-dedicated step in the synthesis of linamarin, the major cyanogenic glycoside in cassava. At 21 days post-inoculation (dpi), a 76% reduction of linamarin content was observed in silenced leaves. Using transgenic plants expressing antisense RNA of CYP79D1and CYP79D2, Siritunga and Sayre (2003) obtained several lines with a reduction level varying from 60% to 94%. This result provides the first example of direct comparison of the efficiency of a virus-induced gene silencing (VIGS) system and the transgenic approach for suppression of a biosynthetic pathway. The ACMV VIGS system will certainly be a complement and in some cases an alternative to the transgenic approach, for gene discovery and gene function analysis in cassava.  相似文献   

13.
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non‐commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS‐LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus‐induced gene silencing of each of the eight NBS‐LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non‐functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full‐length (~1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non‐race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.  相似文献   

14.
15.
16.
RNA silencing, a core part of plants' antiviral defence, requires the ARGONAUTE, DICER-like, and RNA-dependent RNA polymerase proteins. However, how these proteins contribute to watermelon's RNA interference (RNAi) pathway response to cucumber green mottle mosaic virus (CGMMV) has not been characterized. Here, we identify seven ClAGO, four ClDCL, and 11 ClRDR genes in watermelon and analyse their expression profiles when infected with CGMMV. ClAGO1 and ClAGO5 expression levels were highly induced by CGMMV infection. The results of ClAGO1 and ClAGO5 overexpression and silencing experiments suggest that these genes play central roles in watermelon's antiviral defence. Furthermore, co-immunoprecipitation and bimolecular fluorescence complementation experiments showed that ClAGO1 interacts with ClAGO5 in vivo, suggesting that ClAGO1 and ClAGO5 co-regulate watermelon defence against CGMMV infection. We also identified the ethylene response factor (ERF) binding site in the promoters of the ClAGO1 and ClAGO5 genes, and ethylene (ETH) treatment significantly increased ClAGO5 expression. Two ERF genes (Cla97C08G147180 and Cla97C06G122830) closely related to ClAGO5 expression were identified using co-expression analysis. Subcellular localization revealed that two ERFs and ClAGO5 predominantly localize at the nucleus, suggesting that enhancement of resistance to CGMMV by ETH is probably achieved through ClAGO5 but not ClAGO1. Our findings reveal aspects of the mechanisms underlying RNA silencing in watermelon against CGMMV.  相似文献   

17.
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi‐0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map‐based cloning delimited rwm1 on chromosome 1 in a 114‐kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus‐encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N‐terminal domain of cPGK2 is involved in rwm1‐mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus‐induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.  相似文献   

18.
19.
Following the screening of a suppression subtractive library developed from durum wheat plants exposed to low temperature for 6 h, two early cold-regulated (e-cor) genes have been isolated. These genes, coding putatively for a ribokinase (7H8) and a C3H2C3 RING-finger protein (6G2), were characterized by the stress-induced retention of a subset of introns in the mature mRNA. This feature was dependent on cold for 7H8 and on cold and dehydration for 6G2. When other genes, such as the stress-related gene WCOR410c, coding for a dehydrin (one intron), or a gene coding for a putative ATP binding cassette transporter (16 introns) were analyzed, no cold-dependent intron retention was observed. Cold-induced intron retention was not observed in mutants defective in the chloroplast development; nevertheless treatment with cycloheximide in the absence of cold was able to promote intron retention for the 7H8 e-cor gene. These results suggest that the cold-induced intron retention reflects the response of the spliceosoma to specific environmental signals transduced to the splicing protein factors through a chloroplast-dependent pathway. Notably, when the 7H8 Arabidopsis orthologous gene was analyzed, no stress induction in terms of mRNA abundance and no cold-dependent intron retention was detected. Otherwise, 6G2 Arabidopsis homologous sequences sharing the same genomic structure of the durum wheat 6G2 showed a similar intron retention event although not strictly dependent on stress.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
A pathogen- and salicylic acid (SA)-induced DNA-binding activity has been recently identified in tobacco that is related to a previously identified class of WRKY DNA-binding proteins. To identify members of the WRKY gene family associated with this DNA-binding activity, we have attempted to isolate those WRKY genes that are induced by pathogen infection. Using a domain-specific differential display procedure, we have isolated two tobacco WRKY genes, tWRKY3 and tWRKY4, that are rapidly induced in resistant tobacco plants after infection by tobacco mosaic virus (TMV). Both tWRK3 and tWRKY4 encode proteins with a single WRKY domain that contain the conserved WRKYGQK sequence. Unlike other isolated WRKY proteins that contain the Cys2His2 zinc motif, tWRKY3 and tWRKY4 appear to contain the Cys2HisCys zinc motif. Nonetheless, both tWRKY3 and tWRKY4 are capable of binding DNA molecules with the W-box (TTGAC) element recognized by other WRKY proteins. Expression of the tWRKY3 and tWRKY4 genes could be rapidly induced not only by TMV infection but also by SA or its biologically active analogues that are capable of inducing pathogenesis-related genes and enhanced resistance. Interestingly, induction of both genes by TMV infection was still observed in resistant tobacco plants expressing the bacterial salicylate hydroxylase gene (nahG), although the levels of induction appeared to be reduced. Identification of pathogen- and SA-induced genes encoding WRKY DNA-binding proteins should facilitate future studies on the regulation and functions of this novel group of DNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号