共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ben C. Augustine Marc Kéry Juanita Olano Marin Pierre Mollet Gilberto Pasinelli Chris Sutherland 《Population Ecology》2020,62(1):80-90
Modeling the population dynamics of patchily distributed species is a challenge, particularly when inference must be based on incomplete and small data sets such as those from most species of conservation concern. Here, we develop an open population spatial capture–recapture (SCR) model with sex-specific detection and population dynamics parameters to investigate population trend and sex-specific population dynamics of a capercaillie (Tetrao urogallus) population in Switzerland living in eight distinct forest patches totaling 22 km2 within a region of 908 km2 and sampled via scat collection. Our model accounts for the patchy distribution of habitat and the uncertainty introduced by collecting data only every third year, while producing sex by patch population trajectories. The estimated population trajectory was a decline of 2% per year; however, the sex specificity of the model revealed a decline in the male population only, with no evidence of decline in the female population. The decline observed in males was explained by the demography of just two of the eight patches. Our study highlights the flexibility of open population SCR models for assessing population trajectories through time and across space and emphasizes the desirability of estimating sex-stratified population trends especially in species of conservation concern. 相似文献
3.
Richard Glennie David L. Borchers Matthew Murchie Bart J. Harmsen Rebecca J. Foster 《Biometrics》2019,75(4):1345-1355
Open population capture‐recapture models are widely used to estimate population demographics and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture‐recapture (SCR), allowing for estimation of the effective area sampled and population density. Here, open population SCR is formulated as a hidden Markov model (HMM), allowing inference by maximum likelihood for both Cormack‐Jolly‐Seber and Jolly‐Seber models, with and without activity center movement. The method is applied to a 12‐year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary, Belize, to estimate survival probability and population abundance over time. For this application, inference is shown to be biased when assuming activity centers are fixed over time, while including a model for activity center movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation study. The HMM approach is compared with Bayesian data augmentation and closed population models for this application. The method is substantially more computationally efficient than the Bayesian approach and provides a lower root‐mean‐square error in predicting population density compared to closed population models. 相似文献
4.
5.
Effective conservation of large carnivores requires reliable estimates of population density, often obtained through capture–recapture analysis, in order to prioritize investments and assess conservation intervention effectiveness. Recent statistical advances and development of user-friendly software for spatially explicit capture–recapture (SECR) circumvent the difficulties in estimating effective survey area, and hence density, from capture–recapture data. We conducted a camera-trapping study on leopards (Panthera pardus) in Mondulkiri Protected Forest, Cambodia. We compared density estimates using SECR with those obtained from conventional approaches in which the effective survey area is estimated using a boundary strip width based on observed animal movements. Density estimates from Chao heterogeneity models (3.8 ± SE 1.9 individuals/100 km2) and Pledger heterogeneity models and models accounting for gender-specific capture and recapture rates (model-averaged density 3.9 ± SE 2.9 individuals/100 km2) were similar to those from SECR in program DENSITY (3.6 ± SE 1.0/100 km2) but higher than estimates from Jack-knife heterogeneity models (2.9 ± SE 0.9 individuals/100 km2). Capture probabilities differed between male and female leopards probably resulting from differences in the use of human-made trails between sexes. Given that there are a number of biologically plausible reasons to expect gender-specific variation in capture probabilities of large carnivores, we recommend exploratory analysis of data using models in which gender can be included as a covariate affecting capture probabilities particularly given the demographic importance of breeding females for population recovery of threatened carnivores. © 2011 The Wildlife Society. 相似文献
6.
Guy Balme Matt Rogan Lisa Thomas Ross Pitman Gareth Mann Gareth Whittington-Jones Neil Midlane Mark Broodryk Kerryn Broodryk Michelle Campbell Marc Alkema Dave Wright Luke Hunter 《Population Ecology》2019,61(3):256-267
Human impact is near pervasive across the planet and studies of wildlife populations free of anthropogenic mortality are increasingly scarce. This is particularly true for large carnivores that often compete with and, in turn, are killed by humans. Accordingly, the densities at which carnivore populations occur naturally, and their role in shaping and/or being shaped by natural processes, are frequently unknown. We undertook a camera-trap survey in the Sabi Sand Game Reserve (SSGR), South Africa, to examine the density, structure and spatio-temporal patterns of a leopard Panthera pardus population largely unaffected by anthropogenic mortality. Estimated population density based on spatial capture–recapture models was 11.8 ± 2.6 leopards/100 km2. This is likely close to the upper density limit attainable by leopards, and can be attributed to high levels of protection (particularly, an absence of detrimental edge effects) and optimal habitat (in terms of prey availability and cover for hunting) within the SSGR. Although our spatio-temporal analyses indicated that leopard space use was modulated primarily by “bottom-up” forces, the population appeared to be self-regulating and at a threshold that is unlikely to change, irrespective of increases in prey abundance. Our study provides unique insight into a naturally-functioning carnivore population at its ecological carrying capacity. Such insight can potentially be used to assess the health of other leopard populations, inform conservation targets, and anticipate the outcomes of population recovery attempts. 相似文献
7.
8.
Jason A. Schmidt Robert A. Mccleery Paige M. Schmidt Nova J. Silvy Roel R. Lopez 《The Journal of wildlife management》2011,75(1):151-158
We conducted the most intensive estimate of the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) metapopulation to date using pellet surveys and capture–recapture methodology. We livetrapped 83 rabbits, evaluated 5 closed population models, and selected the model that best represented the data. We considered the variation in behavioral response model the best model and correlated (r2 = 0.913) its patch population estimates to patch pellet densities. From the prediction equation, we generated a range-wide metapopulation estimate of 317 rabbits, a western clade population of 257 rabbits, an eastern clade population of 25 rabbits, and translocated marsh rabbit populations of 35 and zero on Little Pine and Water keys, respectively. A subset of patches whose marsh rabbit subpopulations were last estimated in 1993 exhibited a 46% decline in abundance over 15 yr. Due to the low estimate of the eastern clade population, special effort should be initiated to avoid loss of genetic diversity. The prediction equation suffers from limited data at high pellet densities, patches with ≥5 pellets/m2. Future studies should investigate if the slope of the regression is indeed near 1 by sampling patches across the range of pellet densities, especially those with ≥5 pellets/m2. The equation provides managers a quick, efficient, and noninvasive method to estimate marsh rabbit abundance from pellet counts but the confidence of predicted rabbit densities from high pellet density patches is low. © 2011 The Wildlife Society 相似文献
9.
J. Andrew Royle Audrey J. Magoun Beth Gardner Patrick Valkenburg Richard E. Lowell 《The Journal of wildlife management》2011,75(3):604-611
Classical closed-population capture–recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture–recapture models that accommodate the spatial attribute inherent in capture–recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000 km2 (95% Bayesian CI: 5.9–15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies. © 2011 The Wildlife Society. 相似文献
10.
Guillaume J. R. Dauphin Carole-Anne Gillis Gérald J. Chaput 《Journal of fish biology》2024,104(3):681-697
Population monitoring of Atlantic salmon (Salmo salar L.) abundance is an essential element to understand annual stock variability and inform fisheries management processes. Smolts are the life stage marking the transition from the freshwater to the marine phase of anadromous Atlantic salmon. Estimating smolt abundance allows for subsequent inferences on freshwater and marine survival rates. Annual abundances of out-migrating Atlantic salmon smolts were estimated using Bayesian models and an 18-year capture–mark–recapture time series from two to five trapping locations within the Restigouche River (Canada) catchment. Some of the trapping locations were at the outlet of large upstream tributaries, and these sampled a portion of the total out-migrating population of smolts for the watershed, whereas others were located just above the head of tide of the Restigouche River and sampled the entire run of salmon smolts. Due to logistic and environmental conditions, not all trapping locations were operational each year. Additionally, recapture rates were relatively low (<5%), and the absolute number of recaptures was relatively few (most often a few dozen), leading to incoherent and highly uncertain estimates of tributary-specific and whole catchment abundance estimates when the data were modeled independently among trapping locations and years. Several models of increasing complexity were tested using simulated data, and the best-performing model in terms of bias and precision incorporated a hierarchical structure among years on the catchability parameters and included an explicit spatial structure to account for the annual variations in the number of sampled locations within the watershed. When the best model was applied to the Restigouche River catchment dataset, the annual smolt abundance estimates varied from 250,000 to 1 million smolts, and the subbasin estimates of abundance were consistent with the spatial structure of the monitoring programme. Ultimately, increasing the probabilities of capture and the absolute number of recaptures at the different traps will be required to improve the precision and reduce the bias of the estimates of smolt abundance for the entire basin and within subbasins of the watershed. The model and approach provide a significant improvement in the models used to date based on independent estimates of abundance by trapping location and year. Total abundance and relative production in discrete spawning, nesting, or rearing areas provide critical information to appropriately understand and manage the threats to species that can occur at subpopulation spatial scales. 相似文献
11.
Yuhei Tazunoki Kasumi Akashi Sumire Haramoto Akihito Kita Yukari Mochioka Hiroki Matsuda Kazuki Ohta Makoto Tokuda 《Journal of fish biology》2021,99(6):1822-1831
In recent years, the biodiversity of freshwater fishes has been markedly decreasing worldwide because of anthropogenic activities. The Japanese striped loach, Cobitis kaibarai (Cypriniformes: Cobitidae), is a primary freshwater fish endemic to northern Kyushu, Japan. This species is designated as endangered IB class in the Red List by the Japan Ministry of the Environment. Its population is decreasing, possibly because of habitat loss and degradation. To conserve C. kaibarai populations, information on its basic ecology is necessary; nonetheless, its detailed life history and reproductive ecology have yet to be clarified. In this study, the authors conducted monthly capture–mark–recapture surveys and periodical observations to investigate the life history, spawning sites and season of C. kaibarai. They also evaluated the influence of creek reshaping (concrete revetment) on the C. kaibarai population in Saga Plain, northern Kyushu. Between 2015 and 2018, more individuals were captured during winter than summer. The average body width of females peaked in early June and small immatures were confirmed from July. Some individuals were captured across 15 or more months after their initial marking. In the survey of reproductive sites, eggs and larvae of C. kaibarai were found in shallow areas in mid-June; these were temporarily submerged following the increase in water level from early June. Therefore, C. kaibarai spawns in shallow areas during this season. Based on the capture–mark–recapture surveys, the estimated population density of C. kaibarai significantly decreased in a census site that had undergone creek reshaping, which contrasted with the results in a control site, where no significant difference was detected. The standard length of C. kaibarai increased following creek reshaping, suggesting that the proportion of C. kaibarai postponing spawning had increased, possibly because of degradation of spawning environments. The results of this study provide important ecological knowledge for the conservation of C. kaibarai and emphasize the importance of shallow waters for floodplain spawners. 相似文献
12.
Marlene Haider Ramona Steixner Teresa Zeni Stephanie Vallant Reinhard Lentner Birgit C. Schlick-Steiner Florian M. Steiner 《Ibis》2024,166(1):55-68
Population size is an important parameter to monitor for species conservation and management. This is especially important for rare and endangered species, as declines can give information about anthropogenic impacts and the need for new conservation measures. To estimate population size, various methods of analysis can be used, for which sample size is an important factor. Sample size is particularly important to consider when applying non-invasive sampling strategies such as sampling faeces or feathers/hairs as a source of DNA, as a means to limit disturbance and stress for the species of concern. We investigated a Black Grouse Lyrurus tetrix population in the eastern part of the Alps, in East Tyrol (Austria), and estimated population size using two approaches: capture–recapture and rarefaction. With a set of 12 polymorphic microsatellite markers, we identified genotypes from faeces and feathers (backed up with 23 tissue samples) and checked for population substructure and gene flow among sampling sites. We estimated population size using four different models from the two approaches (molecular capture–recapture: TIRM, TIRMpart; rarefaction: hyperbolic function – Kohn, exponential function – Eggert). To evaluate the impact of sample size on the estimations, we used the full dataset of 500 samples (‘complete’ dataset) and half the dataset of 250 samples (‘half’ dataset). We also estimated the population size for each sex separately using complete and half datasets to check for sex-specific differences in population size. We found similar results in three of four models (capture–recapture: capwire TIRM, capwire TIRMpart; rarefaction: rarefaction Kohn). Using just half of the data increased the uncertainties in the estimation of population size in all models used and deviations were particularly large in females, which indicated a sex bias. Only the complete dataset of males had an observation rate of more than two observations/individual, and this observation rate meets the recommendation for using the capwire models. This indicates that, for species with different sex-specific detectability, larger sample sizes do not generally imply higher observation rates. We conclude that calculating the observation rates and population-size estimations for each sex separately can improve overall population-size estimation, especially in species with biased sex ratios and those that exhibit sex-specific behaviour. 相似文献
13.
14.
Basing conservation interventions on evidence is important for justifying their associated cost and gauging their effectiveness. For amphibians, the number of studies available to support conservation action plans is limited. Here, we sought to determine the effect of invasive pine trees on the calling densities of a Critically Endangered frog species, endemic to the Western Cape province in South Africa. The Rough Moss frog, Arthroleptella rugosa, is an anuran restricted to a small patch of fire-driven fynbos habitat prone to invasion by Cluster Pines, Pinus pinaster. We use acoustic spatially explicit capture–recapture methods to estimate frog densities at multiple sites (n = 12) over ten years. Sites were classified as invaded or uninvaded by P. pinaster, and this information, along with the time since the last fire, were used as explanatory variables for frog density in a generalized linear mixed model. Frog densities were found to be significantly affected by P. pinaster invasion status. At invaded sites, there was a negative relationship between call densities and time since fire, while at uninvaded sites the same relationship was positive. These results confirm previous suggestions that invasive pine trees cause population declines in A. rugosa. Our findings can be used to support conservation interventions for A. rugosa, specifically the use of fire in an adaptive management context to control pine invasion across its range. 相似文献
15.
Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model. 相似文献
16.
F. Mattucci R. Oliveira L. Bizzarri F. Vercillo S. Anile B. Ragni L. Lapini A. Sforzi P. C. Alves L. A. Lyons E. Randi 《Ecology and evolution》2013,3(8):2443-2458
Severe climatic changes during the Pleistocene shaped the distributions of temperate‐adapted species. These species survived glaciations in classical southern refuges with more temperate climates, as well as in western and eastern peripheral Alpine temperate areas. We hypothesized that the European wildcat (Felis silvestris silvestris) populations currently distributed in Italy differentiated in, and expanded from two distinct glacial refuges, located in the southern Apennines and at the periphery of the eastern Alps. This hypothesis was tested by genotyping 235 presumed European wildcats using a panel of 35 domestic cat‐derived microsatellites. To provide support and controls for the analyses, 17 know wildcat x domestic cat hybrids and 17 Sardinian wildcats (F. s. libyca) were included. Results of Bayesian clustering and landscape genetic analyses showed that European wildcats in Italy are genetically subdivided into three well‐defined clusters corresponding to populations sampled in: (1) the eastern Alps, (2) the peninsular Apennines, and (3) the island of Sicily. Furthermore, the peninsular cluster is split into two subpopulations distributed on the eastern (Apennine mountains and hills) and western (Maremma hills and lowlands) sides of the Apennine ridge. Simulations indicated Alpine, peninsular, and Sicilian wildcats were isolated during the Last Glacial Maximum. Population subdivision in the peninsula cluster of central Italy arose as consequence of a more recent expansions of historically or ecologically distinct European wildcat subpopulations associated with distinct the Continental or Mediterranean habitats. This study identifies previously unknown European wildcat conservation units and supports a deep phylogeographical history for Italian wildcats. 相似文献
17.
Dankmar Böhning 《Biometrical journal. Biometrische Zeitschrift》2023,65(2):2100343
One-inflation in zero-truncated count data has recently found considerable attention. There are currently two views in the literature. In the first approach, the untruncated model is considered as one-inflated whereas in the second approach the truncated model is viewed as one-inflated. Here, we show that both models have identical model spaces as well as identical maximum likelihoods. Consequences of population size estimation are illuminated, and the findings are illustrated at hand of two case studies. 相似文献
18.
Nicholas B. Elliot Alice Bett Monica Chege Kasaine Sankan Nadia de Souza Linus Kariuki Femke Broekhuis Patrick Omondi Shadrack Ngene Arjun M. Gopalaswamy 《Conservation Science and Practice》2020,2(7):e217
To effectively manage wildlife populations, it is essential to reliably estimate their abundance. This is particularly the case for small, isolated populations, which are vulnerable to extirpation. Lake Nakuru National Park in Kenya is one such small, isolated area where an introduced population of African lions (Panthera leo) is vulnerable to genetic degradation and catastrophic events. A founder population of six individuals was introduced between 1984 and 1992, with no further recorded immigration. We used Bayesian spatially-explicit capture–recapture models to estimate lion density and abundance based on unstructured spatial sampling. For individuals over the age of 1 year, posterior mean lion density was estimated to be 6.75 (mode = 5.93, posterior SD = 0.92) individuals/100 km2, with a mean abundance of 11.37 (mode = 10, posterior SD = 1.54), and a sex ratio of 1.38♀:1♂. Previous reports provided abundance figures much higher than ours. However, our estimates are the result of the first scientifically robust survey and we discuss why they should be viewed as a baseline rather than being suggestive of population decline, and how the discrepancy highlights the need for regular systematic surveys using a standardized framework. Given the small population size and prolonged genetic isolation, we provide long-term management recommendations to secure this lion population. 相似文献
19.
20.
Predicting the responses of populations in changing environments is an important task for ecologists. Understanding the population dynamics of high-latitude breeding species is critical given the particularly rapid environmental changes that occur in these regions. Using long-term mark–resighting data acquired over 53-years in Pointe Géologie, Terre Adélie, Antarctica, we estimated age-specific demographic parameters and evaluated the effect of the environment on survival of a poorly known species, the cape petrel Daption capense. We then modeled the dynamics of this population using a life-history model and performed prospective and retrospective analyses to estimate the sensitivity of the population growth rate to demographic parameters, and to quantify their relative contribution. Survival of cape petrel increased with age, being 0.610 (±0.193) for juveniles, 0.739 (±0.158) for individuals from 2 to 4, and 0.920 (±0.031) for older individuals. Minimum age at first reproduction was 3 years old, the age at which all birds were recruited was 14 years, and mean age at first reproduction was 9.05 (±2.06) years. Adult survival increased over time and was positively correlated with the southern annular mode (SAM). The stochastic population growth rate was estimated at 1.019, and adult survival over age 5 made the largest contribution to variance of the population growth rate. Sensitivity analyses revealed that population regulation was mainly driven by the SAM. Our results suggest that despite the decrease in breeding success, the population of cape petrels at Pointe Géologie increased due to the increase in immature and adult survival. 相似文献