首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997–2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Niño phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lake-wide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Niño phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria.  相似文献   

2.
Muli  J. R.  Mavuti  K. M. 《Hydrobiologia》2001,458(1-3):83-90
The benthic macroinvertebrates in the Kenya waters of Lake Victoria (ca. 1400 km2) were surveyed during four 10 day sampling periods in February, April, August and November 1984. Fourty three taxonomic groups were recorded. Oligochaetes, molluscs and dipteran larvae were the most abundant and widely distributed groups. The dominant oligochaetes were Branchiura sowerbyii Beddard and the swamp worm Alma emini Michaelsen, which were abundant in all silty and soft mud areas in both littoral and open water zones. Melanoides tuberculata Müller, Bellamya unicolor Olivier and Caelatura spp. were the most abundant molluscs. Different patterns were observed between near-littoral stations (<8 m deep) and deep water stations (8–40 m deep). After 10 years (1994), the macroinvertebrates of Lake Victoria were examined again. No evidence was found of seasonal changes in the composition or benthos density, although local changes occurred in some species which were attributed to swarming behaviour or larval settlement patterns. The spatial distribution of the fauna may be influenced primarily by oxygen availability and industrial effluent discharged from paper mill and agro-based industries in the catchment of the lake. There has been a shift in abundance, from an Oligochaeta and Insecta dominated community in 1984, to the present community dominated by Mollusca and Oligochaeta. The ecological role of the benthic community and its recent changes to fisheries production in the lake is discussed.  相似文献   

3.
Both Lake Malawi and Lake Victoria have many species of offshore demersal cichlids, most of which are stenotopic. In Lake Tanganyika there are fewer, more eurytopic, demersal species. These differences may be the effect of the physical regimes of the lakes. In Lake Victoria there is no permanent anoxic layer. In both the other lakes, water below 250 m depth is permanently anoxic and the seasonal cycle is dominated by upwelling. In Lake Malawi this is mainly derived from intermediate water containing free oxygen. In Lake Tanganyika upwelling involves hypolimnetic water, which may rise to within 80 m of the surface, causing great short-term changes in oxygen concentration over the depth range 50–250 m. This has inhibited the development of deep water species restricted to narrow depth ranges.  相似文献   

4.
Lake Baringo is a shallow equatorial lake. This paper reports a diel study of the depth-time distribution of phytoplankton and photosynthesis at one location in Lake Baringo on 10 March 1989. The water column shows a pattern of diurnal stratification probably accentuated by the high turbidity of the water and therefore rapid attenuation of solar energy. This stratified pattern breaks down at night due to atmospheric cooling and the regular onset of winds in the early evening. The phytoplankton is dominated byMicrocystis aeruginosa with some associated epiphytes. It concentrates in the narrow euphotic zone during the diurnal period of stratification due to buoyancy of theMicrocystis; evening breakdown of the thermocline results in the phytoplankton being mixed throughout the water column. A series of measurements of photosynthesis throughout the diurnal period gives an areal rate of 3.8 g O2 m−2 d−1. The relationship between this value and the level of fish exploitation in Lake Baringo is discussed. The diel cycle in Lake Baringo is interpreted as dominating over any seasonal limnological cycle in the lake.  相似文献   

5.
Laguna Lake is a large lake in the central Philippines, close to Metro Manila. Agricultural, industrial and urban development is expanding rapidly in the Laguna Lake basin, giving rise to many forms of environmental stress in the lake and surrounding watershed. In particular, the lake appears to be subject to high rates of sedimentation, and the yields of both open lake and captive fisheries have severely declined. Exploratory coring was undertaken to provide a better understanding of lake sedimentation and long term trends in lake productivity. Actual rates of sedimentation are thought to be about 1–1.5 cm y–1 and are likely about half the calculated rate (unadjusted for sediment mixing). Trends in diatom content and surrogate data (including loss on ignition) suggest major variations which may correlate with changes in productivity and food-web structures.  相似文献   

6.
A.E. Filonov 《Hydrobiologia》2002,467(1-3):141-157
Fluctuations in the atmospheric characteristics, as well as variations in the water level of Lake Chapala are discussed. Field measurements of the atmospheric characteristics and lake level during December 1996 through January 1997 are described; using spectrum analysis of synchronous time series. The findings suggest that the variability is due to the diurnal cycle of atmospheric elements. Lake breeze circulation plays an important role in the area of Lake Chapala; since it was registered in 83% of the data. Periodic fluctuations in atmospheric pressure and wind generate significant seiche amplitudes in the lake, with the periods of about 6 h. With the help of a simple model, the seiche parameters are estimated. The amplitude of one-nodal seiches on one of the edges of the lake; is on average equal to 18 mm. This wave should generate currents of approximately 0.012 m s–1 at the lake`s centre in the area of the nodal line. The experimental results on the thermal regime and circulation of Lake Chapala are discusssed as well. Surface temperature variations were registered at the eastern part of the lake. In all cross-sections, typical spatial variations of 3 °C were registered, over a distance of 100–300 m. A bouy station registered movements of an internal thermal front in the body of the water. The leading edge of the front was accompanied by intense internal waves, in the form of internal KdeV solitones. The front near the buoy station was produced by the movement of a warm body of water travelling from the shallow eastern part of the lake and trigered by morning breeze.  相似文献   

7.
《Aquatic Botany》2007,87(1):90-93
There has been some debate recently about the cause of the decline of water hyacinth on Lake Victoria. While much of this evidence points to classical biological control as the major factor, the El Niño associated weather pattern of the last quarter of 1997 and the first half of 1998 has confused the issue. We argue first that the reductions in water hyacinth on Lake Victoria were ultimately caused by the widespread and significant damage to plants by Neochetina spp., although this process was increased by the stormy weather associated with the El Niño event; second that increased waves and current on Lake Victoria caused by El Niño redistributed water hyacinth plants around the lake; and third that a major lake-wide resurgence of water hyacinth plants on Lake Victoria has not occurred and will not occur unless the weevil populations are disrupted. We conclude that the population crash of water hyacinth on Lake Victoria would not have occurred in the absence of the weevils, but that it may have been hastened by stormy weather associated with the El Niño event.  相似文献   

8.
The future of Lake Victoria and its people is highly related to the future of its papyrus wetlands. This appears to be threatened by the overdrawing of water at two dams at the outlet of Lake Victoria in Uganda, which can lead to wetland loss, tilapia fisheries collapse, enhanced eutrophication of the lake, loss of food security for the empoverished population, and a measurable contribution to global warming.  相似文献   

9.
Hydrology and water balance of Lake Peipsi   总被引:1,自引:1,他引:0  
Ago Jaani 《Hydrobiologia》1996,338(1-3):11-23
Lake Peipsi is a large (3558 km2) but shallow (up to 15.3 m deep) tripartite waterbody hydrologically investigated already since the 19th century. Surface discharge by rivers accounts for more than 80% of its water balance. The residental time of water is about two years in the whole lake but several times less in its shallower southern parts receiving the biggest rivers. The annual water regime is characterized by the highest water in spring, the average amplitude of yearly level fluctuations being 1.15 m. There are known long-term hydrological cycles of 80–90, about 22, 9–11, and even fewer years. Several temporary wind-dependent circular currents exist in the subsurface layers. Alternating transitional currents occur in the narrowest part of the lake. Five different periods are distinguishable in the annual thermic cycle. The duration of the stable ice cover is up to five months (December-April) in the shallower parts but a shorter time in the centre of the lake. The maximum surface temperature in July usually reaches 21–22°C in the open regions but considerably higher (up to 27–28°C in some years) on shallows. The unstable summer stratification is often disturbed by waves and currents. Biological summer, with surface temperatures over 10°C, lasts on an average 134 days.  相似文献   

10.
The relationship between total phosphorus and chlorophyll a concentration was determined for Skinner Lake, Indiana over an annual cycle in 1978–79. Total nitrogen:total phosphorus ratios in the epilimnion ranged from 19 to 220 suggesting a phosphorus-dependent algal yield in the epilimnion. Approximately 90% of annual TP loading reached the lake via streamflow, and 93% of this entered during snowmelt and spring-overturn periods. At that time incoming water flushed the lake 2.4 times. Atmospheric loading accounted for 1.4% of annual TP load. Internal hypolimnetic TP loading occurred during summer stratification. Mean [chl a] for the ice-free period was 15.15 mg m–3, within the range expected for eutrophic lakes.The 1978–79 data were used in conjuction with the Vollenweider & Kerekes (1980) model to produce a model specific for the Skinner Lake system. The model predicted mean epilimnetic total phosphorus and chlorophyll a concentrations from mean total phosphorus concentration in inlet streams and from lake water residence time during the period of spring overturn and summer stratification. The Skinner-specific model was tested in 1982 and it closely predicted observed mean epilimnetic [TP] and [chl a] during the ice-free period. This study shows that variability in lake models which average data over an annual period can be reduced by considering lake-specific seasonal variation in hydrology and external TP loading.  相似文献   

11.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

12.
This study demonstrated how the impact of eutrophication in a deep lake at the southern border of the Alps (Lake Garda) was regulated by specific modes of atmospheric circulation relevant for the Mediterranean area. At the decadal scale, nutrients and phytoplankton increased concurrently since the 1970s. At the annual scale, year-to-year fluctuations in nutrients and phytoplankton were controlled through a chain of causal factors centred on deeply penetrative mixing events determining an upward transport of phosphorus from the hypolimnion to the trophogenic layers. The extent of mixing was in turn controlled by lake and air winter temperature, which were ultimately regulated by the winter fluctuations of the East Atlantic pattern (EA). In its negative state, the EA shows an intense high pressure over the West Atlantic, causing a north-easterly air flow bringing cold air from continental Europe to Mediterranean, thus favouring greater lake mixing and nutrient fertilisation. Cyanobacteria (mostly Planktothrix rubescens) were the organisms which greatly benefitted from the long-term increase in phosphorus concentrations and the year-to-year fluctuations in surface phosphorus availability controlled by the EA. Given the same availability of phosphorus in the water column, positive winter EA phases weakened the eutrophication effects and phytoplankton development.  相似文献   

13.
The atmospheric deposition of phosphorus in Lake Victoria (East Africa)   总被引:2,自引:0,他引:2  
Wet and dry atmospheric fluxes of total phosphorus (TP) and soluble reactive phosphorus (SRP) measured at four sites over a 12-month period were used to estimate lake-wide atmospheric phosphorus (P) deposition to Lake Victoria, East Africa. Atmospheric samples were collected in plastic buckets with top diameter of 25.5 cm by 30 cm deep. The highest P loading rates of 2.7 (TP) and 0.8 (SRP) kg ha–2 year–1 were measured at Mwanza compared to less than 1.9 (TP) and 0.65 (SRP) kg ha–2 year–1 measured in other three sites. By applying these loading rates to the lake surface, it was estimated that 13.5 ktons (13.5 × 103 kg) of TP were deposited annually into the lake from the atmosphere. Thirty-two percent of the total was found to be in the SRP form. Dryfall, a component ignored in previous studies exceeded wet deposition by contributing 75% of the total P input. However, materials deposited by dryfall made a lesser contribution to soluble form of phosphorus, as SRP concentrations in the wet samples were 2–3 times higher than SRP concentrations in dry samples. The annual fluxes of phosphorus measured on the south and western shores of Lake Victoria (1.8–2.7 kg ha–2 year–1) are near the upper range of similar fluxes measured in the tropics. In comparison with the existing estimates of municipal and runoff P inputs from other studies, it is estimated that atmospheric deposition represent 55% of the total phosphorus input to the Lake Victoria. The four sampling sites were fairly clustered and wet and dry P deposition data were collected from shore/land stations and applied to open lake areas to estimate lake-wide P deposition. In this regard, the estimates determined here should be viewed as a first order approximation of actual P load deposited into the lake.  相似文献   

14.
1. We used high‐frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid‐autumn but dropped during the typhoon season and winter. Yuan‐Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ?39.6 μmole O2 m?3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon‐induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere.  相似文献   

15.
Studies of the food of introduced Nile tilapia, Oreochromis niloticus (L.) with respect to size, habitat and season were conducted between November 1998 and October 2000 in Kenyan waters of Lake Victoria. Stomach contents of 1980 specimens collected by demersal trawl and seining were analysed. Nile tilapia originally known to be herbivorous, feeding mostly on algae has diversified its diet to include insects, fish, algae and plant materials. The major diet of fish <5 cm total length was zooplankton whereas bigger fish included a wider range of food items in their diet. There was spatial variation in diet with insects and algae dominating in the gulf and open water habitats respectively. There was no seasonal variation in the food items ingested and diel feeding regime indicated that O. niloticus is a diurnal feeder. The shift in diet could be due to ecological and environmental changes in Lake Victoria, which have been associated with changes in composition and diversity of fish and invertebrate fauna, emergence and dominance of different flora including water hyacinth Eichhornia crassipes (Mart.) Solms‐Laub., and algae communities. The feeding habit of O. niloticus is discussed in the context of changes occurring in the lake.  相似文献   

16.
We report organic and inorganic carbon distributions and fluxes in a large (>2000 km2) oligotrophic, tropical lake (Lake Kivu, East Africa), acquired during four field surveys, that captured the seasonal variations (March 2007–mid rainy season, September 2007–late dry season, June 2008–early dry season, and April 2009–late rainy season). The partial pressure of CO2 (pCO2) in surface waters of the main basin of Lake Kivu showed modest spatial (coefficient of variation between 3% and 6%), and seasonal variations with an amplitude of 163 ppm (between 579±23 ppm on average in March 2007 and 742±28 ppm on average in September 2007). The most prominent spatial feature of the pCO2 distribution was the very high pCO2 values in Kabuno Bay (a small sub-basin with little connection to the main lake) ranging between 11213 ppm and 14213 ppm (between 18 and 26 times higher than in the main basin). Surface waters of the main basin of Lake Kivu were a net source of CO2 to the atmosphere at an average rate of 10.8 mmol m−2 d−1, which is lower than the global average reported for freshwater, saline, and volcanic lakes. In Kabuno Bay, the CO2 emission to the atmosphere was on average 500.7 mmol m−2 d−1 (∼46 times higher than in the main basin). Based on whole-lake mass balance of dissolved inorganic carbon (DIC) bulk concentrations and of its stable carbon isotope composition, we show that the epilimnion of Lake Kivu was net autotrophic. This is due to the modest river inputs of organic carbon owing to the small ratio of catchment area to lake surface area (2.15). The carbon budget implies that the CO2 emission to the atmosphere must be sustained by DIC inputs of geogenic origin from deep geothermal springs.  相似文献   

17.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

18.
The results of numerical modelling of large-scale circulation in Lakes Onega and Ladoga are presented, with primary emphasis on the temporal variability of currents with time scales of days. Some typical circulation patterns have been inferred from model calculations. They reflect the existence of different dynamic regimes in the lakes, namely, forced and free circulation regimes. The forced circulation regime is the well-known wind-induced double-gyre circulation accompanied by coastal upwelling and downwelling. A case of double-gyre circulation in Lake Onega was investigated in particular detail. The second dynamic regime is a free response (or a relaxation) of the stratified lake to wind cessation, and is connected closely with the evolution of wind-induced upwelling and thermal front propagation. Diagnostic calculations demonstrate that the regime of relaxation supports the restoration of cyclonic circulation in Lake Onega. Barotropic circulation patterns in Lake Ladoga were calculated with the emphasis on prevailing winds from west to south-east. Our calculations show that the bottom relief of Lake Ladoga causes asymmetry in the double-gyre circulation patterns. In particular, approximately equal cyclonic and anticyclonic circulation cells appearing in the case of southerly wind transform to a single dominant cyclonic cell and several small anticyclonic cells in the case of westerly wind. We also found especially strong sensitivity of the sense of rotation of the largest gyre to the east-west components of the wind vector.  相似文献   

19.
Evans  J. H. 《Hydrobiologia》1997,354(1-3):1-16
An account is given of the seasonal succession and spatial distributionof phytoplankton derived from a one-year sampling programme (1961–62)on Lake Albert, a large African rift lake. There is evidence of regulationby both physical and nutrient factors. These are influenced by a markedseasonality of temperature/density stratification (temperature range <3°C) and of water input that induces some polarizationalong the axis of the lake. Prevailing concentrations of soluble reactivephosphorus are high (>100 µg l-1), but those ofinorganic nitrogen are low and, with large depletions of silicate-silicon,may limit algal production. The diatom and cyanophyte components of thephytoplankton show different relationships to the seasonal cycle of limitedstratification and vertical mixing. There are possible relationships, bygrazing, to the described seasonal and spatial abundance of planktonicCladocera. Comparisons are made with other African lakes, especially LakeTurkana which is of similar shape and size and shows end to end polarizationof the aquatic biota.  相似文献   

20.
Synopsis The introduction of the Nile perch into Lake Victoria has dramatically altered the fishery in that lake and contributed to the decline of the fishery for indigenous tilapias. One sector of the fishery in Lake Victoria has benefitted from the Nile perch introduction, although catches have declined in recent years. Inefficient enforcement of fisheries regulations has had a detrimental effect on indigenous species but may also have contributed to the recent decline in Nile perch catches. Fisheries development plans have tended to favour capital-intensive fisheries and to ignore small scale subsistence fisheries. A case study at Wichlum Beach on the Kenyan shores of Lake Victoria has revealed the efficiency of traditional fishing and fish drying methods as well as the high ecological costs of the practice of kiln-drying Nile perch. Forty-five tons of firewood are used per month at Wichlum Beach alone for kiln-drying perch. The increased economic viability of the fishery has attracted professionals into the industry and resulted in the development of an export-oriented trade. The Yala Swamp adjacent to Lake Victoria has been extensively drained as part of a large land reclamation scheme and more draining is planned. Increased environmental awareness in Kenya, and Kenya's membership in the Convention on Wetlands of International Importance, has resulted in a critical review of these plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号