首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals of many species show high levels of fidelity to natal populations, often due to reliance on patchily distributed habitat features. In many of these species, the negative impacts of inbreeding are mitigated through specialized behaviours such as seasonal mating dispersal. Quantifying population structure for species with these characteristics can potentially elucidate social and environmental factors that interact to affect mating behaviour and population connectivity. In the northern part of their range, timber rattlesnakes are communal hibernators with high natal philopatry. Individuals generally recruit to the same hibernaculum as their mother and remain faithful to that hibernaculum throughout their lives. We examined the genetic structure of Crotalus horridus hibernacula in the northeastern USA using microsatellite loci. Sampled hibernacula exhibited only modest levels of differentiation, indicating a significant level of gene flow among them. We found no significant correlation between genetic differentiation and geographical distance, but did find significant positive correlation between genetic differentiation and a cost-based distance metric adjusted to include the amount of potential basking habitat between hibernacula. Therefore, thermoregulation sites may increase gene flow by increasing the potential for contact among individuals from different populations. Parentage analyses confirmed high levels of philopatry of both sexes to their maternal hibernaculum; however, approximately one-third of paternity assignments involved individuals between hibernacula, confirming that gene flow among hibernacula occurs largely through seasonal male mating dispersal. Our results underscore the importance of integrating individual-level behaviours and landscape features with studies of fine-scale population genetics in species with high fidelity to patchily distributed habitats.  相似文献   

2.
While some bats cover long distances during migration, moving thousands of kilometers, most migratory bats are considered regional migrants, thought to move relatively short distances (<?500 km) between hibernacula and maternity sites. However, behavior can vary considerably among species and our understanding of these movements has largely been limited to banding studies or detailed tracking of small numbers of bats by aircraft. Inferring population-wide behavior from small samples is difficult and can introduce bias. We tagged 108 Indiana bats (Myotis sodalis) in the Midwestern US and used a regional network of radiotelemetry receivers to study movement patterns. With this dataset, we tested the following traditional generalizations about regional migrants: (1) bats move away from hibernacula in spring in all directions with known maternity roosts, e.g., in a star-like pattern; (2) bats follow linear landscape features; (3) long-distance movements are uncommon; and (4) autumn migration comprises a single movement from summer maternity site to winter hibernaculum. In spring, bats left the hibernaculum immediately and primarily moved north despite available maternity roosts in all directions. We found no evidence that bats follow rivers, the predominant linear element in the landscape. Only six tagged bats traveled >?100 km, suggesting that longer-distance movements may be outliers. In autumn, only two bats visited multiple known hibernacula, and after swarming, some females moved >?100 km to areas without known hibernacula. Common generalizations about regional migrant movements may not be representative of population behavior and care should be taken with respect to management decisions based on those assumptions.  相似文献   

3.
ABSTRACT The isolated gray wolf (Canis lupus) population of the Scandinavian Peninsular is suffering from inbreeding depression. We studied dispersal of 35 wolves fitted with very high frequency (20) or Global Positioning System—global system for mobile (15) radiocollars in the neighboring Finnish wolf population. The growing wolf population in Finland has high numbers of dispersing individuals that could potentially disperse into the Scandinavian population. About half (53%) of the dispersing wolves moved total distances that could have reached the Scandinavian population if they had been straight-line moves, but because of the irregular pattern of movements, we detected no wolves successfully dispersing to the Scandinavian population. Dispersal to the Scandinavian population was also limited by high mortality of wolves in reindeer (Rangifer tarandus) management areas and by dispersal to Bothnian Bay at times of the year when ice was not present. We suggest that when a small wolf population is separated from source populations by distance, barriers, and human exploitation, wildlife managers could promote the population's viability by limiting harvest in the peripheral areas or by introducing wolves from the source population.  相似文献   

4.
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long‐term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short‐ and long‐term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.  相似文献   

5.
We investigated the distribution of variation at six microsatellite loci in the black rat snake (Elaphe obsoleta obsoleta). Sampling occurred at three hierarchical scales ranging from communal hibernacula to regional populations, with most locales situated within the Frontenac Axis region of eastern Ontario. We detected no statistically significant pairwise differentiation (FST and RST) between hibernacula within the same subpopulations (interhibernaculum distance <6 km). However, isolation-by-distance was evident among locales within the Frontenac Axis (maximum of 50 km) and among regional populations (maximum of 1500 km). Conservative estimates of Nc derived from heterozygosity values ranged from approximately 600 to 2000. These values suggest relatively large genetic neighborhoods encompassing many communal hibernacula. Our results considered together suggest viscosity of gene flow over relatively short distances (tens of kilometers), but substantial genetic exchange among local hibernacula.  相似文献   

6.
7.
Seed dispersal can severely limit the quantity of plant recruits and their spatial distribution. However, our understanding of the role of dispersal in regeneration dynamics is limited by the lack of knowledge of seed deposition patterns in space and time. In this paper, we analyse the spatiotemporal variability of seed dispersal patterns in the Mediterranean maple, Acer opalus subsp. granatense, by monitoring seed rain along two years at a broad spatial scale (2 mountain ranges, 2 populations per range, 4 microhabitats per population). We quantified seed limitation and its components (source and dispersal limitation), and explored dispersal limitation in space by analysing dispersal distances, seed aggregation, and microhabitat seed distribution. Acer opalus subsp. granatense was strongly seed‐limited throughout the gradients explored, being always dispersal limitation much higher than source limitation. The distribution of seeds with distance from adult individuals was leptokurtic and right‐skewed in all populations, being both kurtosis and skewness higher the year of the highest seed production. Dispersal distances were shorter than expected by random in the four populations, which suggests distance‐limited dispersal. Dispersal patterns were highly aggregated and showed a preferential direction around adults. At the microhabitat scale, most seeds accumulated under adult maples. However, there were no more seeds under trees and shrubs other than maple than in open interspaces, implying that established vegetation does not disrupt patterns of seed deposition by physically trapping seeds. When compared with patterns of seedling establishment, limited dispersal ability and inter‐annual spatial concordance in seed rain patterns suggest that several potentially safe sites for recruitment have a very low probability of receiving seeds in most maple populations. These findings are especially relevant for rare species such as Acer opalus subsp. granatense, and illustrate how dispersal studies are not only crucial for our understanding of plant population dynamics but also to provide conservation directions.  相似文献   

8.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

9.
Abstract: Dispersal distances and their distribution pattern are important to understanding such phenomena as disease spread and gene flow, but oftentimes dispersal characteristics are modeled as a fixed trait for a given species. We found that dispersal distributions differ for spring and autumn dispersals of yearling male white-tailed deer (Odocoileus virginianus) but that combined data can be adequately modeled based on a log-normal distribution. We modeled distribution of dispersal distances from 3 distinct populations in Pennsylvania and Maryland, USA, based on the relationship between percent forest cover and mean dispersal distance and the relationship between mean and variance of dispersal distances. Our results suggest distributions of distances for dispersing yearling male white-tailed deer can be modeled by simply measuring a readily obtained landscape metric, percent forest cover, which could be used to create generalized spatially explicit disease or gene flow models.  相似文献   

10.
Dispersal can be motivated by multiple factors including sociality. Dispersal behaviour affects population genetic structure that in turn reinforces social organization. We combined observational information with individual-based genetic data in the Karoo scrub-robin, a facultative cooperatively breeding bird, to understand how social bonds within familial groups affect mating patterns, cause sex asymmetry in dispersal behaviour and ultimately influence the evolution of dispersal. Our results revealed that males and females do not have symmetrical roles in structuring the population. Males are extremely philopatric and tend to delay dispersal until they gain a breeding position within a radius of two territories around the natal site. By contrast, females dispersed over larger distances, as soon as they reach independence. This resulted in male neighbourhoods characterized by high genetic relatedness. The long-distance dispersal strategy of females ensured that Karoo scrub-robins do not pair with relatives thereby compensating for male philopatry caused by cooperation. The observed female-biased strategy seems to be the most prominent mechanism to reduce the risk of inbreeding that characterizes social breeding system. This study demonstrates that tying together ecological data, such as breeding status, determining social relationships with genetic data, such as kinship, provides valuable insights into the proximate causes of dispersal, which are central to any evolutionary interpretation.  相似文献   

11.
The distances that individuals disperse, from their natal site to the site of first breeding and between breeding sites, have important consequences for the dynamics and genetic structure of a population. Nearly all previous studies on dispersal have the problem that, because the study area encompassed only a part of the population, emigration may have been confounded with mortality. As a result long-distance dispersers may have been overlooked and dispersal data biased towards short distances. By studying a virtually closed population of Seychelles warblers Acrocephalus sechellensis we obtained almost unbiased results on several aspects of dispersal. As in the majority of other avian species, natal dispersal distance was female biased in the Seychelles warbler. Female offspring also forayed further from the natal territory in search of breeding vacancies than male offspring. The sex bias in natal dispersal distance did, however, depend on local breeding density. In males, dispersal distance decreased as the number of territories bordering the natal territory increased, while in females, dispersal distance did not vary with local density. Dispersal by breeders was rare and, unlike in most species, distances did not differ between the sexes. We argue that our results favour the idea that the sex bias in natal dispersal distance in the Seychelles warbler is due to inbreeding avoidance and not resource competition or intrasexual competition for mates.  相似文献   

12.
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species.  相似文献   

13.
Dispersal distances determine the scales over which many population processes occur. Knowledge of these distances may therefore be crucial in determining the appropriate spatial scales for research and management. However, dispersal distances are difficult to measure, especially for vagile organisms like songbirds. For these species, the use of traditional mark–recapture and radio‐telemetry methods is problematic. We used positive one‐year time‐lagged correlations in abundance to estimate natal dispersal distances. Using the North American Breeding Bird Survey database, we examined one‐year time‐lagged correlations between pairs of North American songbird samples separated by 10–100 km. We submit that consistent positive one‐year time‐lagged correlations reflect the exchange of individuals through dispersal. We found positive one‐year time‐lagged correlations between pairs of samples from 25 different songbird species. The median distances of these correlations ranged from 15 to 95 km, depending on the species. These distances were positively correlated with body size and wing length. Dispersal appears to be the most parsimonious explanation for the time‐lagged correlations we observed in these species. The putative dispersal distances we measured are generally an order of magnitude longer than those reported in the literature.  相似文献   

14.
Dispersal is a central process to almost all species on earth, as it connects spatially structured populations and thereby increases population persistence. Dispersal is subject to (rapid) evolution and local patch extinctions are an important selective force in this context. In contrast to the randomly distributed local extinctions considered in most theoretical studies, habitat fragmentation or other anthropogenic interventions will lead to spatially correlated extinction patterns. Under such conditions natural selection is thought to lead to more long‐distance dispersal, but this theoretical prediction has not yet been verified empirically. We test this prediction in experimental spatially structured populations of the spider mite Tetranychus urticae and supplement these empirical results with insights from an individual‐based evolutionary model. We demonstrate that the spatial correlation of local extinctions changes the entire distribution of dispersal distances (dispersal kernel) and selects for overall less emigration but more long‐distance dispersal.  相似文献   

15.
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.  相似文献   

16.
Gilroy JJ  Lockwood JL 《PloS one》2012,7(5):e38091
Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.  相似文献   

17.
Proximate cues for animal dispersal are complex and varied. Multiple cues may provide information about different aspects of habitat quality, and these aspects may interact with each other, as well as with population density in different ways. We examined how individuals incorporate multiple cues in their decisions to emigrate and immigrate in the colonial orb‐weaving spider, Cyrtophora citricola. We manipulated maternal feeding as a cue for prey abundance and measured the size of the maternal web, which provides a limited space for philopatric offspring and a second potential dispersal cue. In addition, we recorded all immigration events to determine dispersal distances and the cues juveniles may use in settlement. Dispersal increased when mothers were poorly fed, web sizes were small and clutch sizes were large. In addition to these overall effects, maternal feeding also interacted with web size, indicating that offspring from well‐fed mothers were more tolerant of high sibling densities. We also detected a threshold for the effect of clutch size on dispersal for the first egg sac: below 20 offspring, there was no effect of clutch size, but dispersal increased with clutch size for larger clutches. Dispersal distances were often short, and immigrants preferred sheltered trees and those occupied by adult females. Dispersal not only depended on multiple cues, but these cues interacted, and the importance of web size suggested that saturation of the natal web might force dispersal, at least for spiders with poorly‐fed mothers. How one aspect of habitat quality influences dispersal can therefore depend on the state of other aspects of habitat quality. In particular, some natal resources, such as a nest or territory, may become saturated and limit group size, but this limit will also depend on other factors, such as prey availability.  相似文献   

18.
Dispersal and connectivity in metapopulations   总被引:11,自引:0,他引:11  
This paper reviews characteristics of dispersal that influence metapopulation functioning, such as releasing factors, density dependence, timing and types and health of dispersers. Economic thresholds, intraspecific conflicts and avoidance of inbreeding arc often regarded as the key ultimate or proximate (or both) causes of dispersal, but there is no consensus about the most important mechanisms. Dispersing individuals arc often considered to differ genetically from the residents but good supporting evidence has only been presented for some insect species. Sex and age differences in dispersal rates are most common in polygamous species and in long-lived species with many litters per female. A bimodal distribution of dispersal distances, earlier thought to be a common pattern, is probably an artifact, caused by habitat heterogeneity and varying survival of settled individuals. Dispersal distances are longer in poor environments. Habitat specialists are more affected by boundaries during dispersal than generalists. Dispersal just before or during the early reproductive season is common in certain species occupying early successional habitats. Dispersal increased both population and metapopulation size and persistence in plants, insects and small mammals.  相似文献   

19.
Dispersal ability has been hypothesized to reduce intraspecific differentiation by homogenizing populations. On the other hand, long‐distance dispersers may have better opportunities to colonize novel habitats, which could result in population divergence. Using direct estimates of natal and breeding dispersal distances, we investigated the relationship between dispersal distances and: (i) population differentiation, assessed as subspecies richness; (ii) ecological plasticity, assessed as the number of habitats used for breeding; and (iii) wing size, assessed as wing length. The number of subspecies was negatively correlated with dispersal distances. This was the case also after correcting for potential confounding factors such as migration and similarity due to common ancestry. Dispersal was not a good predictor of ecological plasticity, suggesting that long‐distance dispersers do not have more opportunities to colonize novel habitats. Residual wing length was related to natal dispersal, but only for sedentary species. Overall, these results suggest that dispersal can have a homogenizing effect on populations and that low dispersal ability might promote speciation.  相似文献   

20.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号