首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

2.
Xylose isomerase (XI) is a key enzyme in the conversion of d ‐xylose, which is a major component of lignocellulosic biomass, to d ‐xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI‐related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell‐surface display system, and the xylose assimilation and fermentation properties of this XI‐displaying yeast were examined. XI‐displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   

3.
木糖异构酶在酿酒酵母细胞表面的展示   总被引:2,自引:0,他引:2  
将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,与酿酒酵母(Sac-charomyces cerevisiae)a-凝集素表面展示载体pYD1的Aga2p亚基C端序列融合。编码融合蛋白的基因序列前接上半乳糖诱导型启动子。用LiAc完整细胞法转化酿酒酵母EBY100。含重组质粒的菌株EBY100/pYD-xylA经半乳糖诱导表达外源融合蛋白,免疫荧光显微镜结果显示外源蛋白被锚定在细胞壁上,木糖异构酶活性测定结果表明,细胞壁上酶活测定值为1.52U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。  相似文献   

4.
为了使酿酒酵母较好地利用木糖产生乙醇,将来自Thermus thermophilus的木糖异构酶基因XYLA和酿酒酵母自身的木酮糖激酶基因XKS1,构建到酵母表达载体pESC-LEU中,导入酿酒酵母YPH499中,同时成功表达了两种酶基因。该菌以木糖为唯一碳源进行限氧发酵,木糖的利用率为9.64%,为宿主菌的4.17倍,产生2.22 mmol.L-1的乙醇。同时初步探讨了两种酶基因的表达量对酿酒酵母发酵木糖生成乙醇的影响。木糖异构酶对木糖的利用起关键性的作用,木酮糖激酶的过量表达不利于乙醇生成。  相似文献   

5.
Saccharomyces cerevisiae TMB3001 has previously been engineered to utilize xylose by integrating the genes coding for xylose reductase (XR) and xylitol dehydrogenase (XDH) and overexpressing the native xylulokinase (XK) gene. The resulting strain is able to metabolize xylose, but its xylose utilization rate is low compared to that of natural xylose utilizing yeasts, like Pichia stipitis or Candida shehatae. One difference between S. cerevisiae and the latter species is that these possess specific xylose transporters, while S. cerevisiae takes up xylose via the high-affinity hexose transporters. For this reason, in part, it has been suggested that xylose transport in S. cerevisiae may limit the xylose utilization.We investigated the control exercised by the transport over the specific xylose utilization rate in two recombinant S. cerevisiae strains, one with low XR activity, TMB3001, and one with high XR activity, TMB3260. The strains were grown in aerobic sugar-limited chemostat and the specific xylose uptake rate was modulated by changing the xylose concentration in the feed, which allowed determination of the flux response coefficients. Separate measurements of xylose transport kinetics allowed determination of the elasticity coefficients of transport with respect to extracellular xylose concentration. The flux control coefficient, C(J) (transp), for the xylose transport was calculated from the response and elasticity coefficients. The value of C(J) (transp) for both strains was found to be < 0.1 at extracellular xylose concentrations > 7.5 g L(-1). However, for strain TMB3260 the flux control coefficient was higher than 0.5 at xylose concentrations < 0.6 g L(-1), while C(J) (transp) stayed below 0.2 for strain TMB3001 irrespective of xylose concentration.  相似文献   

6.
Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose–xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L−1 acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L−1) in all cultures. Xylose fermentation in acetic –acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.  相似文献   

7.
8.
9.
木糖的有效利用是木质纤维素生产生物燃料或化学品经济性转化的基础.30年来,通过理性代谢改造和适应性进化等工程策略,显著提高了传统乙醇发酵微生物——酿酒酵母Saccharomyces cerevisiae的木糖代谢能力.因此,近年来在酿酒酵母中利用木糖生产化学品的研究逐步展开.研究发现,酿酒酵母分别以木糖和葡萄糖为碳源时...  相似文献   

10.
Purification and molecular analysis of ribose-5-phosphate isomerase (EC5.3.1.6) from Saccharomyces cerevisiae is described first time. The enzymewas enriched from a haploid deletion mutant containing the wild-type gene ona multicopy plasmid elaborating the following steps: ammonium sulphateprecipitation, interfacial salting out on Sepharose 6B, high performanceliquid chromatography on Fractogel EMD DEAE and on Resource Phenyl. Theenzyme activity was found to be rather unstable possibly caused by removalof stabilizing cofactors or proteins during the purification procedure.The purified enzyme showed a hyperbolic dependence on the substrateribose-5-phosphate with a Km-value of 1.6±0.3 mmol/l.For the native enzyme a molecular mass of 115±10 kDa was determinedas found by saccharose density gradient centrifugation, sedimentationequilibrium analysis, size exclusion chromatography and polyacrylamide gelelectrophoresis. Sodium dodecyl sulphate polyacrylamide gel electrophoresisand Western blotting revealed one band with a molecular mass of 31±2kDa. Thus, the native enzyme is composed of four subunits of identicalsize.The molecular mass of the subunit and the identified N-terminal sequenceof 33 amino acids fits well the 258 amino acid protein encoded by the S.cerevisiae RKI open reading frame, which was characterized previously onlyby increasing specific activities of ribose-5-phosphate isomerase in cellsafter cloning the gene. On the basis of the conserved amino acids analignment of the amino acid sequence of ribose-5-phosphate isomerase fromyeast with those of the enzyme from mouse, spinach and Escherichia coli ispresented.  相似文献   

11.
Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d ‐xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC‐displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co2+) especially enhanced the activity by 46‐fold. Co2+ also contributed to d ‐xylose fermentation, which resulted in improving ethanol yields and xylose consumption rates by 6.0‐ and 2.7‐fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC‐displaying yeast showed the faster d ‐xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co‐culture system. A xylan‐degrading yeast strain was established by displaying two kinds of xylanases; endo‐1,4‐β‐xylanase (Xyn11B) from Saccharophagus degradans, and β‐xylosidase (XlnD) from Aspergillus niger. The yeast co‐culture system enabled fine‐tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)‐displaying yeast and XylC‐displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 1013: 1.39 × 1013: 2.78 × 1013 molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co‐culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1068–1076, 2017  相似文献   

12.
利用基因工程手段得到重组菌YPH499-3中的spt15有效突变基因,通过表达载体pYX212转化入酿酒酵母原始菌株YPH499中,重新获得酿酒酵母重组菌株。对其性状进行研究,结果表明该菌株能有效利用木糖并共发酵木糖和葡萄糖。在30oC、200r/min,发酵72h时,50g/L木糖的利用率为82.0%,乙醇产率为28.4%;当木糖和葡萄糖以质量比1:1混合发酵时,木糖和葡萄糖的利用率分别为80.4%和100%,乙醇产率为31.4%;同时发现木糖醇的含量极低。从而验证了有效突变基因spt15-10对酿酒酵母共发酵木糖和葡萄糖产酒精的影响。  相似文献   

13.
[目的]以不同强度的启动子控制表达木酮糖激酶基因,并研究其引起的不同木酮糖激酶活性水平对木糖利用酿酒酵母(Saccharomyces cerevisiae)代谢流向的影响.[方法]以酿酒酵母CEN.PK 113-5D为出发菌株,选择酿酒酵母内源启动子TEF1p,PGK1p和HXK2p,利用Cre-loxP无标记同源重组系统,置换染色体上木酮糖激酶基因XKS1的启动子(XKS1p)序列;并通过附加体质粒引入木糖代谢上游途径,构建不同水平表达木酮糖激酶的木糖利用工程菌株;从木酮糖激酶的转录水平、酶活水平、胞内的ATP浓度及木糖代谢等性状,对各菌株进行评价.[结果]转录及酶活测定结果显示,与天然状态相比,所选择的启动子对木酮糖激酶均表现出更强的启动效率.菌株体内表达木酮糖激酶活性水平由高至低的顺序为其基因XKS1在启动子PGK1p、TEF1p、HXK2p和XKS1p控制下.随着木酮糖激酶的活性的提高,胞内的ATP水平下降,而转化木糖生成乙醇的能力上升.最高乙醇产率为0.35g/g消耗的总糖,此时副产物木糖醇产率最低,为0.18g/g消耗的木糖.[结论]通过在染色体上置换启动子,提高了木酮糖激酶的表达水平.在一定范围内,木酮糖激酶的高活性有利于木糖向乙醇的转化.  相似文献   

14.
Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K(M) for NADPH was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source.  相似文献   

15.
16.
17.
1,2,4‐Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4‐butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2‐ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2‐keto‐3‐deoxy‐xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2‐ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.  相似文献   

18.
Production of a xylose isomerase (XI) with high tolerance to the inhibitors xylitol and calcium, and high activity at the low pH and temperature conditions characteristic of yeast fermentations, is desirable for a simultaneous isomerization/fermentation process for cellulosic ethanol production. A putative XI gene (xylA) from the marine bacterium Fulvimarina pelagi was identified by sequence analysis of the F. pelagi genome, and was PCR amplified, cloned, and expressed in Escherichia coli. The rXI was produced in shake flask and fed‐batch fermentations using glucose as the growth substrate. The optimum pH for rXI was approximately 7, although activity was evident at pH as low as 5.5. The purified rXI had a molecular weight in 160 kDA, a Vmax of 0.142 U/mg purified rXI, and a KM for xylose in the range of 1.75–4.17 mM/L at pH 6.5 and a temperature of 35°C. The estimated calcium and xylitol KI values for rXI in cell‐free extracts were 2,500 mg/L and >50 mM, respectively. The low KM of the F. pelagi xylose isomerase is consistent with the low nutrient conditions of the pelagic environment. These results indicate that Ca2+ and xylitol are not likely to be inhibitory in applications employing the rXI from F. pelagi to convert xylose to xylulose in fermentations of complex biomass hydrolysates. A higher Vmax at low pH (<6) and temperature (30°C) would be preferable for use in biofuels production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1230–1237, 2016  相似文献   

19.
酿酒酵母木糖发酵酒精途径工程的研究进展   总被引:17,自引:1,他引:16  
途径工程(Pathway engineering),被称为第三代基因工程,改变代谢流向,开辟新的代谢途径是途径工程的主要目的。利用途径工程理念,对酿酒酵母(Saccharomyces cerevisiae)代谢途径进行理性设计,以拓展这一传统酒精生产菌的底物范围,使其充分利用可再生纤维质水解物中的各种糖分,是酿酒酵母酒精途径工程的研究热点之一。这里介绍了近年来酿酒酵母以木糖为底物的酒精途径工程的研究进展。  相似文献   

20.
酿酒酵母工业菌株中XI木糖代谢途径的建立   总被引:9,自引:0,他引:9  
根据代谢工程原理,采取多拷贝整合策略,利用整合载体pYMIKP,将来自嗜热细菌Thermusthermophilus的木糖异构酶(XI)基因xylA和酿酒酵母(Saccharomycescerevisiae)自身的木酮糖激酶(XK)基因XKS1,插入酿酒酵母工业菌株NAN-27的染色体中,得到工程菌株NAN-114。酶活测定结果显示,NAN-114中XI和XK的活性均高于出发菌株NAN-27,表明外源蛋白在酿酒酵母工业菌株中得到活性表达。对木糖、葡萄糖共发酵摇瓶实验结果表明,工程菌NAN-114消耗木糖4.6g/L,产生乙醇6.9g/L,较出发菌株分别提高了43.8%和9.5%。首次在酿酒酵母工业菌株中建立了XI路径的木糖代谢途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号