共查询到20条相似文献,搜索用时 0 毫秒
1.
Min Ju Kim Hee Geun Jo Chilakala Ramakrishna Seung-Jae Lee Dong-Sung Lee Sun Hee Cheong 《Journal of Exercise Nutrition & Biochemistry》2021,25(4):45
[Purpose]In this study, we investigated whether a 70% ethanolic (EtOH) extract of Sargassum horneri had antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophage-like RAW 264.7 cells.[Methods]The proximate composition, fatty acids, amino acids, and dietary fiber of S. horneri, various biologically active compounds, and antioxidant activity were analyzed.[Results]The DPPH and ABTS free radical scavenging activities, as well as the reduction power, of the S. horneri extract used here were significantly increased in a concentration-dependent manner. This indicates that S. horneri contains bioactive compounds, such as phenols and flavonoids, that have excellent antioxidant activity. The cellular viability and metabolic activity results confirmed that the extract had no discernible toxicity at concentrations up to 100 μg/mL. The levels of nitrites and cytokines (PGE2, TNF-α and IL-6), which mediate pro-inflammatory effect, were significantly inhibited by treatment with either 50 or 100 μg/mL S. horneri extract, whereas that of IL-1β was significantly inhibited by treatment with 100 μg/mL of the extract. Similarly, the expression of iNOS and COX-2 proteins also decreased according to 50 or 100 μg/mL extract concentrations. NF-κB binding to DNA was also significantly inhibited by treatment with 100 μg/mL of extract.[Conclusion]These results suggest that 70% EtOH extracts of S. horneri can relieve inflammation caused by disease or high intensity exercise. 相似文献
2.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):875-879
Inflammation is an essential host defense system particularly in response to infection and injury; however, excessive or undesirable inflammatory responses contribute to acute and chronic human diseases. A high-throughput screening effort searching for anti-inflammatory compounds from medicinal plants deduced that the methanolic extract of Juniperus rigida S. et L. (Cupressaceae) inhibited significantly nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Activity-guided fractionation and isolation yielded 13 phenolic compounds, including one new phenylpropanoid glycosides, 3,4-dimethoxycinnamyl 9-O-β-D-glucopyranoside (1). Among the isolated compounds, phenylpropanoid glycosides with p-hydroxy group (2, 4) and massoniaside A (7), (+)-catechin (10), amentoflavone (11) effectively inhibited LPS-induced NO production in RAW264.7 cells. 相似文献
3.
Miyahara Y Ikeda S Muroya T Yasuoka C Urata Y Horiuchi S Kohno S Kondo T 《Biochemical and biophysical research communications》2002,296(1):32-40
Advanced glycation end products (AGEs) play an important role in the development of angiopathy in diabetes mellitus and atherosclerosis. Here, we show that adducts of N(epsilon)-(carboxymethyl)lysine (CML), a major AGE, and bovine serum albumin (CML-BSA) stimulated gamma-glutamylcysteine synthetase (gamma-GCS), which is a key enzyme of glutathione (GSH) synthesis, in RAW264.7 mouse macrophage-like cells. CML-BSA stimulated the expression of gamma-GCS heavy subunit (h) time- and dose-dependently and concomitantly increased GSH levels. CML-BSA also stimulated DNA-binding activity of activator protein-1 (AP-1) within 3h, but the stimulatory effect decreased in 5h, and nuclear factor-kappaB (NF-kappaB) with a peak activity at 1h and the stimulatory effect diminished in 3h. Studies of luciferase activity of the gamma-GCSh promoter showed that deletion and mutagenesis of the AP-1-site abolished CML-BSA-induced up-regulation, while that of NF-kappaB-site did not affect CML-BSA-induced activity. CML-BSA also stimulated the activity of protein kinase C, Ras/Raf-1, and MEK/ERK1/2. Inhibition of ERK1/2 abolished CML-BSA-stimulated AP-1 DNA-binding activity and gamma-GCSh mRNA expression. Our results suggest that induction of gamma-GCS by CML adducts seems to increase the defense potential of cells against oxidative stress produced during glycation processes. 相似文献
4.
【目的】通过培养RAW264.7细胞,并运用siRNA沉默NOD2基因来研究NODs信号通路在体外抗烟曲霉中的作用。【方法】体外培养RAW264.7细胞,接种2×105个/孔细胞于六孔板中,分为正常对照组(N)和正常沉默组[NOD2(RNAi),正常+烟曲霉孢子刺激组(N+Af)和正常沉默+烟曲霉孢子刺激组[NOD2(RNAi)+Af],每组三复孔。通过RT-PCR法检测细胞中NOD1、NOD2、RIP2 mRNA表达;Western blot法检测细胞中分泌蛋白TNF-α表达。【结果】与N组比较,N+Af组NOD1、NOD2 mRNA和TNF-α蛋白表达显著上升。与阴性对照组(Nctrol)相比,NOD2(RNAi)组NOD2 mRNA表达明显受到抑制,沉默效果达到80%以上,说明RAW264.7细胞中NOD2基因被成功沉默。与NOD2(RNAi)组比较,NOD2(RNAi)+Af组NOD1、RIP2 mRNA和TNF-α蛋白表达小幅上升,但无显著性差异(P>0.05)。与NOD2基因沉默前比较发现:与N组比较,NOD2(RNAi)组,TNF-α蛋白表达显著性升高(P<0.05)。与N+Af组比较,NOD2(RNAi)+Af组,TNF-α蛋白显著性降低(P<0.05);NOD1、RIP2 mRNA在各组中表达均未见显著性差异。【结论】NODs信号通路在RAW264.7细胞抗烟曲霉中发挥作用,尤以NOD2的作用较突出。 相似文献
5.
Naoki Koide Yoshikazu Naiki Akiko Morikawa Gantsetseg Tumurkhuu Jargalsaikhan Dagvadorj Abu Shadat Mohammod Noman Imtiaz Iftekar-E-Khuda Takayuki Komatsu Tomoaki Yoshida Takashi Yokochi 《Microbiology and immunology》2009,53(5):295-300
Nystatin is known to deplete lipid rafts from mammalian cell membranes. Lipid rafts have been reported to be necessary for lipopolysaccharide signaling. In this study, it was unexpectedly found that lipopolysaccharide-induced nitric oxide production was not inhibited, but rather increased in the presence of a non-cytotoxic concentration of nystatin. Surprisingly, treatment with nystatin induced only NO production and iNOS expression in RAW264.7 cells. At the concentration used, no changes in the expression of GM1 ganglioside, a lipid raft marker on RAW264.7 cells, was seen. From studies using several kinds of inhibitors for signaling molecules, nystatin-induced NO production seems to occur via the iκB/NF-κB and the PI3 K/Akt pathway. Furthermore, because nystatin is known to activate the Na-K pump, we examined whether the Na-K pump inhibitor amiloride suppresses nystatin-induced NO production. It was found that amiloride significantly inhibited nystatin-induced NO production. The results suggest that a moderate concentration of nystatin induces NO production by Na-pump activation through the PI3 kinase/Akt/NF-κB pathway without affecting the condition of lipid rafts. 相似文献
6.
《Bioorganic & medicinal chemistry》2020,28(7):115330
Polysaccharides are a type of natural macromolecule widely existing in nature, and its pharmacological activity has attracted wide research attention. In this study, Brassica rapa L. polysaccharides were taken as the research object, and a preliminary study of the immune activity and mechanism of the antitumor activity of these polysaccharides in vitro was carried out. Five polysaccharides, namely, BRP, BRNP-1, BRNP-2, BRAP-1, and BRAP-2, were compared in terms of their ability to inhibit the growth of three types of cancer cells, namely, A549, AGS, and HepG2. The most effective polysaccharides were screened out, and their mechanism was studied. Immunoassay results showed that the five polysaccharides not only promoted the growth of RAW264.7 cells but also stimulated their endocytic/pinocytosis activity and released NO, TNF, IL-6 cytokines, especially BRP. In vitro antitumor experiments showed that BRP has a significant inhibitory effect (*P < 0.05) on the growth of A549 cells, especially at high concentrations (500–2000 μg/mL). BRP can also induce A549 cells to release reactive oxygen species, cause mitochondrial membrane potential, and effect the expression of Bax, caspase-9, caspase-3, p53, and B-cell lymphoma 2. Immunological experiments showed that the five groups of polysaccharides are not cytotoxic to normal cells and have immunostimulatory effects. Mitochondria represent one of the more important endogenous pathways in the apoptotic process. The results suggested that BRP participates in mitochondria mediated apoptosis and induces A549 cell apoptosis. This study lays a theoretical foundation for further research on the mechanisms of BRP immunoregulation and antitumor activity in vitro and in vivo. 相似文献
7.
Taewoo Joo Kandhasamy Sowndhararajan Sunghyun Hong Jaehak Lee Sun-Young Park Songmun Kim Jin-Woo Jhoo 《Saudi Journal of Biological Sciences》2014,21(5):427-435
This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO. 相似文献
8.
The aim of the present study to isolate the water-soluble polysaccharide from Astragalus membranaceus roots (AMP) and investigate the structural effects on RAW 264.7 murine macrophage and natural killer (NK) cells. AMP mainly consists of carbohydrates (66.2 %), proteins (11.8 %), and sulfates (18.0 %) with minor level of uronic acid (2.0 %). The structural modification was carried out by removal of protein and sulfate from AMP through the deproteination and desulfation. After deproteination (DP), the protein content was decreased from 11.8 % to 5.4 %. Similarly, the sulfate content of desulfated AMP (DS) was decreased from 18.0%–8.1%. AMP and DP could stimulate RAW264.7 cells to produce nitric oxide (NO) and up-regulate mRNA expression through NF-κB and MAPKs pathways. However, DS showed a considerably lower level of NO production than AMP and DP, suggesting that DS could not stimulate RAW264.7 cells. AMP and its derivatives significantly increased the natural killer cells (NK cell) proliferation (113.1%–128.7%) and cytotoxicity against HeLa cells (37.4%–55.5%). However, DS showed the lowest level of NK cells activation through the expression of IFN-γ, TNF-α, Granzyme-B, and NKp44. These results suggest that sulfate groups of AMP might play a crucial role in the RAW264.7 cells and NK cells activation. 相似文献
9.
10.
A series of naturally occurring 3,3-dimethylallyloxy- and geranyloxycoumarins and alkaloids were chemically synthesized and tested as anti-inflammatory agents for their inhibitory effects on nitric oxide production in LPS-stimulated RAW 264.7 cells. Results indicated that the alkaloid of fungal origin 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy]quinoline-2-carboxylate, commonly known as Ppc-1, and coumarins having an unsubstituted 2-benzopyrone ring exhibited the highest activity with IC50 values from 23 to 34 μM without having poor or not detectable cytotoxicity. Indomethacine and L-NAME used as reference drugs provided by far less activities. 相似文献
11.
Aims: The study aimed to identify the resistance genes mediating atypical minimum inhibitory concentrations (MICs) for tetracycline, erythromycin, clindamycin and chloramphenicol within two sets of representative strains of the species Lactobacillus reuteri and Lactobacillus plantarum and to characterize identified genes by means of gene location and sequencing of flanking regions.
Methods and Results: A tet (W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm (B) and one strain each was positive for erm (C) and erm (T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet (M) gene. The majority of the tet (W)-positive Lact. reuteri strains and all erm -positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study.
Conclusions: Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated.
Significance and Impact of the Study: These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics. 相似文献
Methods and Results: A tet (W) gene was found in 24 of the 28 Lact. reuteri strains with atypical MIC for tetracycline, whereas four of the six strains with atypical MIC for erythromycin were positive for erm (B) and one strain each was positive for erm (C) and erm (T). The two Lact. plantarum strains with atypical MIC for tetracycline harboured a plasmid-encoded tet (M) gene. The majority of the tet (W)-positive Lact. reuteri strains and all erm -positive Lact. reuteri strains carried the genes on plasmids, as determined by Southern blot and a real-time PCR method developed in this study.
Conclusions: Most of the antibiotic-resistant strains of Lact. reuteri and Lact. plantarum harboured known plasmid-encoded resistance genes. Examples of putative transfer machineries adjacent to both plasmid- and chromosome-located resistance genes were also demonstrated.
Significance and Impact of the Study: These data provide some of the knowledge required for assessing the possible risk of using Lact. reuteri and Lact. plantarum strains carrying antibiotic resistance genes as starter cultures and probiotics. 相似文献
12.
Mengshan Liu Zhen Zhang Qianqian He Shizhou Qi Kunlai Sun Shuang Miao Yan Wu Kaikai Gong 《化学与生物多样性》2023,20(6):e202300410
Two new naphthyridine compounds, 4-methoxycarbonyl-5-oxo-1,6-naphthyridine ( 1 ) and 5-methoxycarbonyl-4-oxo-1,6-naphthyridine ( 2 ) were obtained from the MeOH extracts of sponge Aaptos suberitoides. Their structures were determined by spectroscopic methods, including HR-ESI-MS, 1D-NMR (1H-NMR, 13C-NMR), 2D-NMR (COSY, HSQC, HMBC). The structure of compound 1 was further confirmed via single crystal X-ray diffraction analysis. Compound 1 was found to reduce NO production in LPS-induced RAW 264.7 macrophages with IC50 value of 0.15 mM. In addition, it decreased the mRNA expression levels of pro-inflammatory mediators, such as the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) in LPS-induced macrophages. It also decreased the protein expression of iNOS and COX-2 in LPS-induced macrophages. Mechanistic studies further revealed that compound 1 inhibited the mitogen-activated protein kinase (MAPK), and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathways in LPS-induced RAW 264.7 macrophages. 相似文献
13.
14.
Qi-Zhang Li Yu-Zhou Chang Zhu-Mei He Lei Chen Xuan-Wei Zhou 《Journal of cellular physiology》2019,234(12):23337-23348
Ganoderma lucidum immunomodulatory protein (FIP-glu) is an active ingredient with potential immunoregulatory functions. The study was conducted to explore the immunomodulatory activities of recombinant FIP-glu (rFIP-glu) and its possible mechanism in macrophage RAW264.7 cells. In vitro assays of biological activity indicated that rFIP-glu significantly activated RAW264.7 cells and possessed proinflammatory and anti-inflammatory abilities. RNA sequencing analysis and Western blot analysis showed that macrophage activation involved PI3K/Akt and MAPK pathways. Furthermore, real-time quantitative polymerase chain reaction indicated that the PI3K inhibitor LY294002 blocked the messenger RNA (mRNA) levels of MCP-1 (CCL-2), the MEK1/2 inhibitor U0126 reduced the mRNA levels of TNF-α and MCP-1 (CCL-2), and the JNK1/2/3 inhibitor SP600125 prevented the upregulation of inducible nitric oxide synthase mRNA in rFIP-glu-induced cells. rFIP-glu did not mediate these inflammatory effects through a general pathway but rather through a different pathway for a different inflammatory mediator. These data imply that rFIP-glu possessed immunomodulatory activity in macrophages, which was mediated through PI3K/Akt and MAPK pathways. 相似文献
15.
Chengchao Song Xiaobin Yang Yongsheng Lei Zhen Zhang Wanli Smith Jinglong Yan Lingbo Kong 《Journal of cellular physiology》2019,234(7):11969-11975
Established RAW264.7 cell lines for osteoclastic differentiation has been widely engaged in bone homeostasis research, however, the efficacy of RANKL independently stimulating has rarely been defined, because protocols were usually developed and modified by various laboratories. Otherwise, problematic issues are also lie in the cell's seeding density, RANKL stimulating time point, and distinguishing osteoclastogenesis ability of RANKL-treated RAW264.7 cells. Therefore, in the current study, we examined the efficacy of various concentrations of RANKL-treated RAW264.7 for its osteoclastic differentiation with or without pretreated other costimulators such as: LPS and/or M-CSF. The oteoclastogenesis ability of RANKL-treated RAW264.7 cells was demonstrated by bone resorption pit, F-actin, and osteoclastogenesis specific marker studies. Besides that, through tartrate-resistant acid phosphatase (TRAP) staining, we clarified to start the treatment with 30 ng/ml RANKL at 12 hr after seeded RAW264.7 with the density of 6.25 × 10 3 cells/cm 2 manifested an significantly increased number of multinucleated osteoclastic cells. Overall, our results establishing an optimal method for RANKL independently inducing RAW 264.7 cell osteoclastic differentiation, which could efficiently generate osteoclasts in vitro for significant advances in our understanding of bone biology. 相似文献
16.
Mingzhe Feng Lin Liu Zechao Qu Bo Zhang Yanjun Wang Liang Yan Lingbo Kong 《Journal of cellular and molecular medicine》2023,27(5):701-713
Metastasis-associated protein 1 (MTA1), belonging to metastasis-associated proteins (MTA) family, which are integral parts of nucleosome remodelling and histone deacetylation (NuRD) complexes. However, the effect of MTA1 on osteoclastogenesis is unknown. Currently, the regulation of MTA1 in osteoclastogenesis was reported for the first time. MTA1 knockout cells (KO) were established by CRISPR/Cas9 genome editing. RAW264.7 cells with WT and KO group were stimulated independently by RANKL to differentiate into mature osteoclasts. Further, western blotting and quantitative qRT-PCR were used to explore the effect of MTA1 on the expression of osteoclast-associated genes (including CTSK, MMP9, c-Fos and NFATc1) during osteoclastogenesis. Moreover, the effects of MTA1 on the expression of reactive oxygen species (ROS) in osteoclastogenesis was determined by 2′, 7′ -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Nuclear translocation of Nrf2 was assessed by immunofluorescence staining and western blotting. Our results indicated that the MTA1 deletion group could differentiate into osteoclasts with larger volume and more TRAP positive. In addition, compared with WT group, KO group cells generated more actin rings. Mechanistically, the loss of MTA1 increased the expression of osteoclast-specific markers, including c-Fos, NFATc1, CTSK and MMP-9. Furthermore, the results of qRT-PCR and western blotting showed that MTA1 deficiency reduced basal Nrf2 expression and inhibited Nrf2-mediated expression of related antioxidant enzymes. Immunofluorescence staining demonstrated that MTA1 deficiency inhibited Nrf2 nuclear translocation. Taken together, the above increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclast formation. 相似文献
17.
本文探讨了罗氏乳杆菌DSM122460无细胞上清培养液(Cell-Free Supernatant,CFS)移除胆固醇的能力。采用邻苯二甲醛法测定DSM122460和对照菌株ST-III发酵过程中及其CFS对胆固醇的移除能力,并研究不同CFS浓度下的移除能力。并采用HPLC法测定CFS对照、热处理组和pH7.0组的胆盐水解酶活力,同时测定其移除胆固醇能力。结果显示,DSM122460不仅在发酵过程中具有较高的移除胆固醇能力,其CFS也表现出较高的移除能力,CFS中含有除胆盐水解酶以外的可移除胆固醇的蛋白类成分。这提示可能存在一种乳酸菌移除胆固醇的新机制。 相似文献
18.
Broussonetia papyrifera has been used as a diuretic, tonic and suppressor of edema. Bioactivity-guided fractionation and metabolite investigation of root bark extracts of this plant resulted in the isolation and identification of six 1,3-diphenylpropanes (1, 2, 8, 10, 17, 20), flavanone (3), two chalcones (4, 5), five flavans (6, 11, 14–16), dihydroflavonol (7) and five flavonols (9, 12, 13, 18, 19), including five new compounds (5, 7, 8, 19, 20) that inhibit NO production in LPS-induced RAW264.7 cells. The structures of compounds 1–20 were elucidated on the basis of spectroscopic data (1D and 2D NMR, MS, MS/MS, and HRMS). In particular, compounds 3, 5, 7, 12, and 20 exhibited significant inhibitory effects on the NO, iNOS, and pro-inflammatory cytokine (TNF-α and IL-6) production. Therefore, this study suggests that the flavonoid-rich products of B. papyrifera, including the new compounds, could be valuable candidates for the development of pharmaceuticals or functional foods in the prevention and treatment of anti-inflammatory disease. 相似文献
19.
Cong Fu Hongchun Dong Xiaozhen Wang Huirui Wang Yang Zheng Dandan Ren Yunhai He Shu Liu Qiukuan Wang 《化学与生物多样性》2023,20(1):e202200393
Potamogeton crispus L. (P. crispus) is the type of a widely distributed perennial herbs, which is rich in rhodoxanthin. In this research work, five antioxidant indexes in vitro were selected to study the antioxidant activity of rhodoxanthin from P. crispus (RPC). A model of hydrogen peroxide (H2O2) -induced oxidative damage in RAW264.7 cells was established to analyze the antioxidant effect and potential mechanism of RPC. The levels of ROS, MDA and the activities of oxidation related enzymes by H2O2 were determined by enzyme linked immunosorbent assay (ELISA). The mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 was measured by qRT-PCR assay. According to the results, RPC had free radical scavenging ability for 2, 2-diphenyl-1-trinitrohydrazine (DPPH), 2,2’-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid radical ion) (ABTS), hydroxyl radical and superoxide anion. RPC significantly decreased the level of MDA and ROS and LDH activity, while increased GSH level and activities of SOD, GSH−Px and CAT. It was showed that RPC could increase the mRNA expression of Nrf-2, HO-1, SOD1 and SOD2 in RAW264.7 cells in a dose-dependently manner. In summary, RPC treatment could effectively attenuate the H2O2-induced cell damage rate, and the mechanism is related to the reduction of H2O2 induced oxidative stress and the activation of Nrf-2 pathway. 相似文献
20.
【目的】布鲁氏菌与宿主相互作用的分子机制是目前的研究热点之一,布鲁氏菌通过形成来自于内质网的布氏小体而在巨噬细胞内生存和增殖,其机制目前尚不清楚,宿主细胞内质网应激反应对病原感染和炎症的调控密切相关。揭示内质网应激反应在布鲁氏菌感染巨噬细胞中的作用以及布鲁氏菌感染对巨噬细胞分泌免疫因子的影响。【方法】构建布鲁氏菌感染RAW264.7模型,在感染后不同时间收集细胞,通过实时荧光定量PCR检测细胞内质网应激反应标志分子GRP78和CHOP,以及TNF-α、IL-1β和IL-6在m RNA水平的变化;通过Western blot和ELISA分别检测其蛋白水平的变化。【结果】布鲁氏菌感染RAW264.7细胞的最佳感染复数MOI为100?1;证明在布鲁氏菌感染4-6 h,巨噬细胞可杀伤侵入的布鲁氏菌,之后存活的细菌可在细胞内增殖;感染后24 h出现细胞凋亡,48 h出现大量细胞坏死。布鲁氏菌感染可激活RAW264.7细胞的内质网应激反应,促进GRP78的表达,同时,抑制免疫因子的分泌。【结论】内质网应激反应参与了RAW264.7对布鲁氏菌感染的调节。 相似文献