首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谭毅 《激光生物学报》2011,20(5):582-585,590
采用探测器的脉冲响应在频域反卷积滤波光声信号以进一步提高光声成像的分辨率.由仿真和实验结果表明,频域反卷积滤波重建相对于时域反投影重建和滤波反投影重建具有更好的成像效果,明显地提高重建图像的分辨率,经仿真结果的计算,其重建图像的分辨率由2.58 mm提高到了0.16 mm.实验所用的光源为YAG激光器,波长为1064 ...  相似文献   

2.
The distribution of patterns of activity in different brain structures has been related to the encoding and processing of sensory information. Consequently, it is important to be able to image the distribution of these patterns to understand basic brain functions. The spatial resolution of voltage-sensitive dye (VSD) methods has recently been enhanced considerably by the use of video imaging techniques. The main factor that now hampers the resolution of VSD patterns is the inherent limitation of the optical systems. Unfortunately, the intrinsic characteristics of VSD images impose important limitations that restrict the use of general deconvolution techniques. To overcomes this problem, in this study an image restoration procedure has been implemented that takes into consideration the limiting characteristics of VSD signals. This technique is based on applying a set of imaging processing steps. First, the signal-to-noise (S/N) ratio of the images was improved to avoid an increase in the noise levels during the deconvolution procedures. For this purpose, a new filter technique was implemented that yielded better results than other methods currently used in optical imaging. Second, focal plane images were deconvolved using a modification of the well-known nearest-neighbor deconvolution algorithm. But to reduce the light exposure of the preparation and simplify image acquisition procedures, adjacent image planes were modeled according to the in-focus image planes and the empirical point spread function (PSF) profiles. Third, resulting focal plane responses were processed to reduce the contribution of optical responses that originate in distant image planes. This method was found to be satisfactory under simulated and real experimental conditions. By comparing the restored and unprocessed images, it was clearly demonstrated that this method can effectively remove the out-of-focus artifacts and produce focal plane images of better quality. Evaluations of the tissue optical properties allowed assessment of the maximum practical optical section thickness using this deconvolution technique in the optical system tested. Determination of the three-dimensional PSF permitted the correct application of deconvolution algorithms and the removal of the contaminating light arising from adjacent as well as distant optical planes. The implementation of this deconvolution approach in salamander olfactory bulb allowed the detailed study of the laminar distribution of voltage-sensitive changes across the bulb layer. It is concluded that (1) this deconvolution procedure is well suited to deconvolved low-contrast images and offers important advantages over other alternatives; (2) this method can be properly used only when the tissue optical properties are first determined; (3) high levels of light scattering in the tissue reduce the optical section capabilities of this technique as well as other deconvolution procedures; and (4) use of the highest numerical aperture in the objectives is advisable because this improves not only the light-collecting efficiency to detect poor-contrast images, but also the spatial frequency differences between adjacent image planes. Under this condition it is possible to overcome some of the limitations imposed by the light scattering/birefringence of the tissue.  相似文献   

3.
A bag-in-box system (BBS) whose volume is monitored by a mechanical spirometer tends to have a slow response if the volume of the box is large, and this may significantly affect its measurement of gas flow. We describe a device for creating reproducible gas flows with which the impulse response of a BBS may be conveniently determined. Two computational techniques for correcting a BBS flow measurement for the effects of the impulse response were investigated: 1) an exponential model method that assumes a second-order model of the BBS dynamics and 2) a Fourier transform-based method of deconvolution known as Wiener filtering. Both correction methods produced a significant increase in the accuracy of BBS flow estimations, with the Wiener filter giving superior results.  相似文献   

4.
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure.  相似文献   

5.
Denoising is a fundamental early stage in 2‐DE image analysis strongly influencing spot detection or pixel‐based methods. A novel nonlinear adaptive spatial filter (median‐modified Wiener filter, MMWF), is here compared with five well‐established denoising techniques (Median, Wiener, Gaussian, and Polynomial‐Savitzky–Golay filters; wavelet denoising) to suggest, by means of fuzzy sets evaluation, the best denoising approach to use in practice. Although median filter and wavelet achieved the best performance in spike and Gaussian denoising respectively, they are unsuitable for contemporary removal of different types of noise, because their best setting is noise‐dependent. Vice versa, MMWF that arrived second in each single denoising category, was evaluated as the best filter for global denoising, being its best setting invariant of the type of noise. In addition, median filter eroded the edge of isolated spots and filled the space between close‐set spots, whereas MMWF because of a novel filter effect (drop‐off‐effect) does not suffer from erosion problem, preserves the morphology of close‐set spots, and avoids spot and spike fuzzyfication, an aberration encountered for Wiener filter. In our tests, MMWF was assessed as the best choice when the goal is to minimize spot edge aberrations while removing spike and Gaussian noise.  相似文献   

6.
基于样品及点源光声信号逆卷积的光声成像方法   总被引:2,自引:0,他引:2  
光声成像是一种新的生物组织成像方法,在目前的光声成像中,都是通过样品光声信号和超声探测器的脉冲响应来计算样品光吸收的投影,但是由于无法获得超声探测器较准确的脉冲响应,影响重建图像质量。提出一种新的计算样品光吸收投影的方法,从理论上给出了样品光吸收投影和样品及点源光声信号的关系,由样品及点源光声信号的逆卷积可直接计算样品光吸收的投影,点源光声信号通过聚焦入射激光直接测得。试验结果显示,重建图像和样品的相对位置、形状及尺寸完全吻合,成像系统空间分辨率达到0.3mm,证明这是一种有效的光声成像方法。  相似文献   

7.
We applied the Wiener theory to analyse receptive field responses of L-cells in the carp and studied some dynamic properties of the receptive field of L-cells for monochromatic light stimuli. The L-cells were stimulated by each monochromatic light modulated in white-noise fashion. They responded almost linearly to all the monochromatic light stimuli. The impulse responses of the L-cells became larger in amplitude and faster in latency, peak response time, and repolarising phase as a spot of monochromatic light was enlarged. The L-cells seem to respond like a lowpass filter and the cutoff frequency of their gain characteristics increases with the enlargement of the monochromatic light spot. The relation between shift of cutoff frequency and spot diameter was monotonic increasing for each monochromatic light.  相似文献   

8.
9.
Spontaneous postsynaptic currents (PSCs) provide key information about the mechanisms of synaptic transmission and the activity modes of neuronal networks. However, detecting spontaneous PSCs in vitro and in vivo has been challenging, because of the small amplitude, the variable kinetics, and the undefined time of generation of these events. Here, we describe a, to our knowledge, new method for detecting spontaneous synaptic events by deconvolution, using a template that approximates the average time course of spontaneous PSCs. A recorded PSC trace is deconvolved from the template, resulting in a series of delta-like functions. The maxima of these delta-like events are reliably detected, revealing the precise onset times of the spontaneous PSCs. Among all detection methods, the deconvolution-based method has a unique temporal resolution, allowing the detection of individual events in high-frequency bursts. Furthermore, the deconvolution-based method has a high amplitude resolution, because deconvolution can substantially increase the signal/noise ratio. When tested against previously published methods using experimental data, the deconvolution-based method was superior for spontaneous PSCs recorded in vivo. Using the high-resolution deconvolution-based detection algorithm, we show that the frequency of spontaneous excitatory postsynaptic currents in dentate gyrus granule cells is 4.5 times higher in vivo than in vitro.  相似文献   

10.
11.
Heterogenous packing of plasma membrane lipids is important for cellular processes like signalling, adhesion and sorting of membrane components. Solvatochromic membrane fluorophores that respond to changes from liquid-ordered (lo) phase to liquid-disordered (ld) by red shifts in their emission spectra are often used to assess lipid packing. Their response can be quantified using generalized polarisation (GP) using fluorescence microscopy images from two emission ranges, preferably from a region of interest (ROI) limited to a specific membrane compartment. However, image quality is limited by Poisson noise and convolution by the point spread function of the imaging system. Examining GP-analysis of C-laurdan labelled T cells using the image restoration procedure deconvolution, we demonstrate that deconvolution substantially improves the image resolution by making the plasma membrane clearly discernible and facilitating plasma membrane ROI selection. We conclude that automatic ROI selection has advantages over manual ROI selection when it comes to reproducibility and speed, but reliable GP-measurements can also be obtained by manually demarcated ROIs. We find that deconvolution enhances the difference in GP-values between the plasma and intracellular membranes and demonstrate that moving an intensity defined plasma membrane ROI outwards from the cell further improves this differentiation. By systematically changing the key deconvolution regularization parameter signal to noise, we establish a protocol for deconvolution optimisation applicable to any solvatochromic dye and imaging system. The image processing and ROI selection protocol presented improves both the resolution and precision of GP-measurement and will enable detection of smaller changes in membrane order than is currently achievable.  相似文献   

12.
An iterative method for the deconvolution of microcalorimetry thermograms suitable for small digital computers is presented. The method employs a measured impulse response function directly as the deconvolution kernel, thus explicit system simulation is not required. Data are presented showing the performance of the method and the exchange of signal-to-noise ratio for time resolution that is made when deconvolution techniques are employed. An improvement in the system time resolution of fifty times is demonstrated with measured data.  相似文献   

13.
In susceptibility-weighted imaging (SWI), the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR). The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM) denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI) to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR) and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.  相似文献   

14.
In this paper, we propose the use of bilinear dynamical systems (BDS)s for model-based deconvolution of fMRI time-series. The importance of this work lies in being able to deconvolve haemodynamic time-series, in an informed way, to disclose the underlying neuronal activity. Being able to estimate neuronal responses in a particular brain region is fundamental for many models of functional integration and connectivity in the brain. BDSs comprise a stochastic bilinear neurodynamical model specified in discrete time, and a set of linear convolution kernels for the haemodynamics. We derive an expectation-maximization (EM) algorithm for parameter estimation, in which fMRI time-series are deconvolved in an E-step and model parameters are updated in an M-Step. We report preliminary results that focus on the assumed stochastic nature of the neurodynamic model and compare the method to Wiener deconvolution.  相似文献   

15.
In this paper, a new filtering method is presented to remove the Rician noise from magnetic resonance images (MRI) acquired using single coil MRI acquisition system. This filter is based on nonlocal neutrosophic set (NLNS) approach of Wiener filtering. A neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Now, we apply the neutrosophic set into image domain and define some concepts and operators for image denoising. First, the nonlocal mean is applied to the noisy MRI. The resultant image is transformed into NS domain, described using three membership sets: true (T), indeterminacy (I) and false (F). The entropy of the neutrosophic set is defined and employed to measure the indeterminacy. The ω-Wiener filtering operation is used on T and F to decrease the set indeterminacy and to remove the noise. The experiments have been conducted on simulated MR images from Brainweb database and clinical MR images. The results show that the NLNS Wiener filter produces better denoising results in terms of qualitative and quantitative measures compared with other denoising methods, such as classical Wiener filter, the anisotropic diffusion filter, the total variation minimization and the nonlocal means filter. The visual and the diagnostic quality of the denoised image are well preserved.  相似文献   

16.
Methods to record action potential (AP) firing in many individual neurons are essential to unravel the function of complex neuronal circuits in the brain. A promising approach is bolus loading of Ca(2+) indicators combined with multiphoton microscopy. Currently, however, this technique lacks cell-type specificity, has low temporal resolution and cannot resolve complex temporal firing patterns. Here we present simple solutions to these problems. We identified neuron types by colocalizing Ca(2+) signals of a red-fluorescing indicator with genetically encoded markers. We reconstructed firing rate changes from Ca(2+) signals by temporal deconvolution. This technique is efficient, dramatically enhances temporal resolution, facilitates data interpretation and permits analysis of odor-response patterns across thousands of neurons in the zebrafish olfactory bulb. Hence, temporally deconvolved Ca(2+) imaging (TDCa imaging) resolves limitations of current optical recording techniques and is likely to be widely applicable because of its simplicity, robustness and generic principle.  相似文献   

17.
A new method for correction of mass spectrometer output signals is described. Response-time distortion is reduced independently of any model of mass spectrometer behavior. The delay of the system is found first from the cross-correlation function of a step change and its response. A two-sided time-domain digital correction filter (deconvolution filter) is generated next from the same step response data using a regression procedure. Other data are corrected using the filter and delay. The mean squared error between a step response and a step is reduced considerably more after the use of a deconvolution filter than after the application of a second-order model correction. O2 consumption and CO2 production values calculated from data corrupted by a simulated dynamic process return to near the uncorrupted values after correction. Although a clean step response or the ensemble average of several responses contaminated with noise is needed for the generation of the filter, random noise of magnitude less than or equal to 0.5% added to the response to be corrected does not impair the correction severely.  相似文献   

18.
The Wiener filter is a standard means of optimizing the signal in sums of aligned, noisy images obtained by electron cryo-microscopy (cryo-EM). However, estimation of the resolution-dependent (“spectral”) signal-to-noise ratio (SSNR) from the input data has remained problematic, and error reduction due to specific application of the SSNR term within a Wiener filter has not been reported. Here we describe an adjustment to the Wiener filter for optimal summation of images of isolated particles surrounded by large regions of featureless background, as is typically the case in single-particle cryo-EM applications. We show that the density within the particle area can be optimized, in the least-squares sense, by scaling the SSNR term found in the conventional Wiener filter by a factor that reflects the fraction of the image field occupied by the particle. We also give related expressions that allow the SSNR to be computed for application in this new filter, by incorporating a masking step into a Fourier Ring Correlation (FRC), a standard resolution measure. Furthermore, we show that this masked FRC estimation scheme substantially improves on the accuracy of conventional SSNR estimation methods. We demonstrate the validity of our new approach in numeric tests with simulated data corresponding to realistic cryo-EM imaging conditions. This variation of the Wiener filter and accompanying derivation should prove useful for a variety of single-particle cryo-EM applications, including 3D reconstruction.  相似文献   

19.
《Médecine Nucléaire》2007,31(5):219-234
Scintigraphic images are strongly affected by Poisson noise. This article presents the results of a comparison between denoising methods for Poisson noise according to different criteria: the gain in signal-to-noise ratio, the preservation of resolution and contrast, and the visual quality. The wavelet techniques recently developed to denoise Poisson noise limited images are divided into two groups based on: (1) the Haar representation, (2) the transformation of Poisson noise into white Gaussian noise by the Haar–Fisz transform followed by a denoising. In this study, three variants of the first group and three variants of the second, including the adaptative Wiener filter, four types of wavelet thresholdings and the Bayesian method of Pizurica were compared to Metz and Hanning filters and to Shine, a systematic noise elimination process. All these methods, except Shine, are parametric. For each of them, ranges of optimal values for the parameters were highlighted as a function of the aforementioned criteria. The intersection of ranges for the wavelet methods without thresholding was empty, and these methods were therefore not further compared quantitatively. The thresholding techniques and Shine gave the best results in resolution and contrast. The largest improvement in signal-to-noise ratio was obtained by the filters. Ideally, these filters should be accurately defined for each image. This is difficult in the clinical context. Moreover, they generate oscillation artefacts. In addition, the wavelet techniques did not bring significant improvements, and are rather slow. Therefore, Shine, which is fast and works automatically, appears to be an interesting alternative.  相似文献   

20.
Three-dimensional imaging by deconvolution microscopy   总被引:26,自引:0,他引:26  
Deconvolution is a computational method used to reduce out-of-focus fluorescence in three-dimensional (3D) microscope images. It can be applied in principle to any type of microscope image but has most often been used to improve images from conventional fluorescence microscopes. Compared to other forms of 3D light microscopy, like confocal microscopy, the advantage of deconvolution microscopy is that it can be accomplished at very low light levels, thus enabling multiple focal-plane imaging of light-sensitive living specimens over long time periods. Here we discuss the principles of deconvolution microscopy, describe different computational approaches for deconvolution, and discuss interpretation of deconvolved images with a particular emphasis on what artifacts may arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号