首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The abuse of antibiotics and the emergence of drug-resistant bacteria aggravate the problem of food safety. Finding safe and efficient antibiotic substitutes is an inevitable demand for ensuring the safety of animal-derived food. Bacteriophages are a kind of virus that can infect bacteria, fungi or actinomycetes. They have advantages of simple structure, strong specificity and nontoxic side effects for the human body. Bacteriophages can not only differentiate live cells from dead ones but also detect bacteria in a viable but nonculturable state. These characteristics make bacteriophages more and more widely used in the food industry. This paper describes the concept and characteristics of bacteriophages, and introduces the application of bacteriophages in preharvest production, food processing, storage and sales. Several methods of using bacteriophages to detect foodborne pathogens are listed. Finally, the advantages and limitations of bacteriophages in the food industry are summarized, and the application prospect of bacteriophages in the food industry is discussed.  相似文献   

2.
噬菌体在食品安全中的应用和潜在风险   总被引:1,自引:0,他引:1  
近年来,经食品传播的感染性疾病时有发生,有的国家甚至有增多趋势。噬菌体在早期被用来治疗细菌性疾病,现在人们已经意识到噬菌体在食品工业上的应用前景也非常广阔。已经有人提出把它作为食品添加剂使用以杀灭食源性致病菌。而噬菌体本身的特性也确实说明,噬菌体是保障食品安全的理想工具。因为噬菌体不仅安全可靠,而且有严格的宿主特异性,在杀灭食源性致病菌的同时不会杀死生产中的发酵菌株。噬菌体可以用在食品生产中的各个环节以杀灭或抑制病原菌,比如原料采集、生产、储藏等环节。探讨噬菌体杀灭食源性致病菌的应用前景和潜在风险。  相似文献   

3.
Biofilm could be defined as a complex communities of microorganisms seen affixed to surfaces, they form clusters without sticking to any surface and buried firmly in an extracellular matrix (ECM). This matrix is formed by microorganisms in the formation of either extracellular polymeric substances (EPSS) or extracellular polymer. Many reviews have addressed the negative consequences of biofilm production in the food industry, among which we talk about biofilms being responsible for spoilage microorganisms and foodborne pathogens such as Listeria monocytogenes, Bacillus cereus etc. These contamination could be linked to biofilms presence in the processing plant. Although researches have tried conferring solutions to these challenges in the food industry, however, in this review we have tried to focus on the positive impact of biofilms formed in the food industry. It is critically expedient while trying to find the solution to the challenges of biofilm in the food industry to develop and give a major focus on the advantages and positive impact biofilm has in the food industry, which has been greatly neglected. Hence in this article, we have highlighted some positive impacts of biofilms formed in the food industry, like enhancing plant health and productivity of food products, as an agent of water and wastewater treatment in the food industry, as a tool in reducing the amount of excess sludge in the wastewater treatment plant. The development of edible biofilms, fermented food products and the production of biodegradable food packaging are also part of biofilms beneficial roles in the food industries.  相似文献   

4.
In recent years it has become widely recognized that bacteriophages have several potential applications in the food industry. They have been proposed as alternatives to antibiotics in animal health, as biopreservatives in food and as tools for detecting pathogenic bacteria throughout the food chain. Bacteriophages are viruses that only infect and lyse bacterial cells. Consequently, they display two unique features relevant in and suitable for food safety. Namely, their safe use as they are harmless to mammalian cells and their high host specificity that allows proper starter performance in fermented products and keeps the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about ‘edible viruses’. In this review, we examine the promising uses of phages for the control of foodborne pathogens and the drawbacks on which more research is needed to further exploit these biological entities.  相似文献   

5.
噬菌体及其裂解酶在食源性致病菌检测和控制中的应用   总被引:1,自引:0,他引:1  
微生物致病菌引起的食源性疾病在全世界频频发生,对人类健康造成严重危害,尤其是致病菌耐药性的出现使常规治疗陷入困境。噬菌体及其编码的裂解酶的发现及应用,为食源性致病菌的检测及生物防治开辟了新的途径。综述噬菌体及其裂解酶在构建食源性致病菌的快速检测方法和生物防治方面的应用。  相似文献   

6.

Background  

Pseudomonas fluorescens is an important food spoilage organism, usually found in the form of biofilms. Bacterial biofilms are inherently resistant to a variety of antimicrobial agents, therefore alternative methods to biofilm control, such as bacteriophages (phages) have been suggested. Phage behavior on biofilms is still poorly investigated and needs further understanding. Here we describe the application of phage ϕIBB-PF7, a newly isolated phage, to control P. fluorescens biofilms. The biofilms were formed under static or dynamic conditions and with or without renewal of medium.  相似文献   

7.
Listeria monocytogenes is an important cause of human foodborne infections and its ability to form biofilms is a serious concern to the food industry. To reveal the effect of glucose conditions on biofilm formation of L. monocytogenes, 20 strains were investigated under three glucose conditions (0.1, 1.0, and 2.0% w v–1) by quantifying the number of cells in the biofilm and observing the biofilm structure after incubation for 24, 72, and 168 h. In addition, the biofilms were examined for their sensitivity to sodium hypochlorite. It was found that high concentrations of glucose reduced the number of viable cells in the biofilms and increased extracellular polymeric substance production. Moreover, biofilms formed at a glucose concentration of 1.0 or 2.0% were more resistant to sodium hypochlorite than those formed at a glucose concentration of 0.1%. This knowledge can be used to help design the most appropriate sanitation strategy.  相似文献   

8.
The biofilm formation by foodborne pathogens is known to increase the problem related with surface disinfection procedure in the food processing environment and consequent transmission of these pathogens into the population. Messenger RNA has been increasingly used to understand the action and the consequences of disinfectants in the virulence on such biofilms. RNA quality is an important requirement for any RNA-based analysis since the quality can impair the mRNA quantification. Therefore, we evaluated five different RNA extraction kits using biofilms of the foodborne pathogens Listeria monocytogenes, Escherichia coli, and Salmonella enterica. The five kits yielded RNA with different quantities and qualities. While for E. coli the variability of RNA quality did not affect the quantification of mRNA, the same was not true for L. monocytogenes or S. enterica. Therefore, our results indicate that not all kits are suitable for RNA extraction from bacterial biofilms, and thus, the selection of RNA extraction kit is crucial to obtain accurate and meaningful mRNA quantification.  相似文献   

9.
Li  Yanmei  Qiu  Yisen  Ye  Congxiu  Chen  Ling  Liang  Yi  Liu  Guoxing  Liu  Junyan 《Bioprocess and biosystems engineering》2020,43(4):693-700
Bioprocess and Biosystems Engineering - Rapid and sensitive detection techniques for foodborne pathogens are important to the food industry. However, traditional detection methods rely on bacterial...  相似文献   

10.
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.  相似文献   

11.
Foodborne pathogens are one of the major cause of food-related diseases and food poisoning. Bacterial biofilms and quorum sensing (QS) mechanism of cell–cell communication have also been found to be associated with several outbreaks of foodborne diseases and are great threat to food safety. Therefore, In the present study, we investigated the activity of three tetrahedrally coordinated copper(I) complexes against quorum sensing and biofilms of foodborne bacteria. All the three complexes demonstrated similar antimicrobial properties against the selected pathogens. Concentration below the MIC i.e. at sub-MICs all the three complexes interfered significantly with the quorum sensing regulated functions in C. violaceum (violacein), P. aeruginosa (elastase, pyocyanin and alginate production) and S. marcescens (prodigiosin). The complexes demonstrated potent broad-spectrum biofilm inhibition in Pseudomonas aeruginosa, E. coli, Chromobacterium violaceum, Serratia marcescens, Klebsiella pneumoniae and Listeria monocytogenes. Biofilm inhibition was visualized using SEM and CLSM images. Action of the copper(I) complexes on two key QS regulated functions contributing to biofilm formation i.e. EPS production and swarming motility was also studied and statistically significant reduction was recorded. These results could form the basis for development of safe anti-QS and anti-biofilm agents that can be utilized in the food industry as well as healthcare sector to prevent food-associated diseases.  相似文献   

12.
Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.  相似文献   

13.
食源性致病菌多重分子生物学检测技术研究进展   总被引:2,自引:1,他引:1  
快速、可靠的食源性致病菌高通量检测方法对于确保食品安全具有重要意义,近年基于DNA水平的多重分子生物学检测技术迅速发展,针对各种不同的食源性致病菌建立了多种多重分子检测技术,包括多重PCR、多重实时荧光PCR以及基因芯片等。对这些多重分子检测技术的最新研究进展作一综述,并且建议在今后该技术的研究中,仍需要在食品中多种致病菌同时选择性增菌培养、亚致死损伤修复以及检测内标的构建等方面取得突破,从而能够更好地实现食源性致病菌的高通量检测。  相似文献   

14.
Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.  相似文献   

15.
噬菌体及其裂解酶对细菌生物被膜作用的研究进展   总被引:2,自引:0,他引:2  
细菌形成的生物被膜,可保护细菌不易被抗生素杀死,这给临床上相应疾病的治疗及医疗器械的消毒带来极大困难。研究表明,噬菌体及其裂解酶对生物被膜有降解作用。噬菌体能清除细菌在有生物活性或无生物活性的介质表面形成的生物被膜。此外,噬菌体裂解酶比如LySMP、肽酶CHAPk、细胞壁溶解酶CWHs等能清除特定的生物被膜,这可能与裂解酶直接溶菌和裂解细菌细胞外基质有关。同时,与抗生素、钴离子、氯等物质联合使用时,噬菌体对生物被膜的清除作用会更强。本文从噬菌体、噬菌体编码的裂解酶、以及它们联合其他物质对细菌生物被膜的作用进行综述,并对其实际应用做了展望。  相似文献   

16.
辽宁省2012年食源性致病菌监测结果分析   总被引:1,自引:0,他引:1  
目的监测了解辽宁省食品中致病菌污染状况,对食源性致病菌监测结果分析,为有效防治疾病提供科学依据。方法2012年采集辽宁省及8个市疾病预防控制中心的7大类食品共l824件食品样品,按照“食源性致病菌监测工作手册”标准操作程序,对常见食源性致病菌、卫生指标菌和寄生虫进行检测。结果各类指标菌样品1824份,阳性检出率为11.24%。其中副溶血性弧菌检出率最高,为19.78%;其次为蜡样芽孢杆菌,检出率为10.04%。结论辽宁主要食品均受到食源性致病菌不同程度的污染,要注意加强即食性食品的致病菌污染监测,防止食物中毒的爆发流行。  相似文献   

17.
Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1–2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.  相似文献   

18.
This review looks at the contribution of microbiological sampling to the safety of retail foods in England and Wales. It compares sampling methods available and assesses the value of testing as part of outbreaks of foodborne disease, as part of routine management by local authorities, as part of work done or commissioned by the food industry, and as part of research. It confirms that microbiological testing has a role during outbreaks as it makes a significant contribution to help identify foods and other areas of greatest risk for future study. The review suggests that routine testing by local authorities is often of limited use and could be improved by more targeted surveillance. Testing could be better used to validate primary control methods, such as Hazard Analysis and Critical Control Point (HACCP) system. Any public health benefit from testing in the food industry is often restricted by client confidentiality. Microbial research on foods is important as it can lead to significant improvements in safety. Current microbiological methods are slow and, in future, rapid molecular methods may make an even bigger contribution to the control of foodborne disease.  相似文献   

19.
食源性致病菌存在广泛,能够引起人类的疾病甚至死亡,研究发现超过一半的食品安全问题来源于食源性致病菌的污染。如何快速有效地检测出食源性致病菌是预防和控制食品安全问题的关键环节。系统地介绍了检测食源性致病菌的方法,包括传统培养法、代谢学法、分子生物学法、免疫学方法等传统方法以及新兴的质谱法。质谱法有检测效率高、操作简便、灵敏度高等优点,着重对质谱法的原理、应用以及未来的发展趋势进行了阐述,以期为该技术的研究开发和推广应用提供参考。  相似文献   

20.
Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms'' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies to control biofilms with widespread applications in industry as well as medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号