首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-two quinazoline derivatives have been synthesised and examined for their anti-tumour activity against three tumour cell lines, namely human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human hepatoma cell line (HepG2). Twelve of the tested compounds have shown promising anti-tumour activity with an IC50 range of 5.0–9.7 µg/mL. Regarding the spectrum of activity, five compounds exhibited interesting anti-proliferative properties against the three tested cell lines comparable to the reference drug (dasatinib).  相似文献   

2.
In this study we report on the characterization of a series of pentacoordinate aluminum 8-hydroxyquinolines, AlQ2X (X = F, Cl, Br), composed of two 8-hydroxyquinoline (8-HQ) groups and one halogen ligand. These were prepared by reacting 8-hydroxyquinoline and dialkylaluminum halide stoichiometrically. The λmaxs of absorption and emission were in the range of 385-388 and 515-516 nm, respectively, which were similar to AlQ3. The molar absorptivity of AlQ2X is similar regardless of the X group but emission efficiency of AlQ2X is 2-3 fold higher than that of AlQ3 when X = F or Br, but not when X = Cl. This result can be attributed to decreased quenching of energy due to a less steric environment by reducing quinolinate content. The overall molecular orbital structures and the absorption spectra of AlQ2X and AlQ3 are very similar due to a single quinolinate unit. The value of the potential difference of AlQ2Xs between anodic and cathodic waves (ΔE = 3.12 V) is close to the estimated HOMO-LUMO energy gap (the optical band gap, ΔEoptical ∼ 1240/λmax), 3.19 eV. Detailed optical and electrochemical properties of AlQ2X are discussed.  相似文献   

3.
This work describes the preparation of quinoline compounds as possible anti-bacterial agents. The synthesized quinoline derivatives show anti-bacterial activity towards Staphylococcus aureus. It is interesting to observe that the synthetic 5,7-dibromo-2-methylquinolin-8-ol (4) shows a similar minimum inhibitory concentration of 6.25 μg/mL as compared to that of methicillin (3.125 μg/mL) against Staphylococcus aureus.  相似文献   

4.
Abstract

To explore the pharmacological and structure–activity relationship of a series of N-substituted-(4-oxo-2-substituted-phenylquinazolin-3-(4H)-yl), substituted benzene sulfonamide derivatives (125) were synthesized from substituted anthranilic acids derived amino quinazolines and substituted benzene sulphonamides. All the synthesized compounds were evaluated for their diuretic (by Lipschitz et al. method), antihypertensive activity by non-invasive blood pressure (NIBP) using the tail-cuff method and anti-diabetic potential in rats. Six compounds showing significantly excellent activity were compared with metolazone, prazosin and diazoxide as standards. Compound N-[7-chloro-2-(4-methoxyphenyl)-4-oxoquinazolin-3(4H)-yl]-4 nitrobenzenesulfonamide (20) exhibited most potent of the series.  相似文献   

5.
Four new diaza analogues (14, 15, 23, and 24) of the conformationally constrained aminobutyrophenone derivatives QF0104B (5) and QF0108B (6) were synthesized (Schemes 2 and 3), and evaluated for their binding affinities (Table) towards the serotonin 5-HT2A and 5-HT2C, and the dopamine D2 receptors. Among the new compounds, the quinazoline derivative 15 (= 7-{[4-(4-fluorobenzoyl)piperidin-1-yl]methyl}-5,6,7,8-tetrahydroquinazolin-5-one) exhibited the highest affinities towards the serotonin 5-HT2A and dopamine D2 receptors, and it is in the borderline of potential atypical antipsychotics. The cinnoline derivative 23 (= 7-{[4-(4-fluorobenzoyl)piperidin-1-yl]methyl}-5,6,7,8-tetrahydro-3-methylcinnolin-5-one) displayed high selectivity in its binding profile towards the 5-HT2C compared to both the 5-HT2A and D2 receptors.  相似文献   

6.
8-Hydroxyquinoline (8HyQ) and its derivatives are the important constituents in a variety of pharmaceutical compounds. The effect of protonation and deprotonation of 8HyQ on its electronic structure and fluorescence was investigated using B3LYP/6-311G** level of theory. We also investigated the interaction of chemosensor, 8HyQ, with different transition metals (Zn2+, Fe2+, Ni2+ and Co2+) at the same level. Our results revealed that 8HyQ displays an unusual fluorescence intensity–proton transfer relationship with diminished emission in a protonated form but enhanced emission in a deprotonated form. The Zn2+, Fe2+, Ni2+ and Co2+ complexes of 8HyQ, which were investigated at the same level of theory, showed that the order of binding energies was 8HyQ-Ni2+>8HyQ-Zn2+>8HyQ-Co2+>8HyQ-Fe2+. Time-dependent density functional theory calculations indicated that Zn ion enhances the fluorescence of 8HyQ as a consequence of the inhibition of the proton transfer. The results are in good agreement between the predicted properties of transition metal complexes of 8HyQ and previously published experimental and theoretical results. A natural bond orbital analysis was performed to understand the nature of hydrogen-bonding interaction in 8HyQ and also to reveal the inter-relations between electronic structure and other properties.  相似文献   

7.
8-hydroxyquinoline has been previously used as an inhibitor in studies on porphyrin metabolism, where it is thought to act by chelating iron. It is shown that this compound also rapidly inhibits uridine uptake of seedlings or cotyledons of the crucifer Matthiola incana R.Br. RNA synthesis is also affected but the inhibition is not as severe as reported for fission yeast.Abbreviations oligo (dT)-cellulose cellulose with oligo-deoxythymidylic acid attached - poly (A) polyadenylic acid  相似文献   

8.
Many Candida spp. produce surface-adherent biofilm populations that are resistant to antifungal compounds and other environmental stresses. Recently, certain chelating agents have been recognized as having strong antimicrobial activity against biofilms of Candida species. This study investigated and characterized the concentration- and time-dependent killing of Candida biofilms by the chelators tetrasodium EDTA and sodium diethyldithiocarbamate. Here, Candida albicans and Candida tropicalis biofilms were cultivated in the Calgary Biofilm Device and then exposed to gradient arrays of these agents. Population survival was evaluated by viable cell counting and by confocal laser scanning microscopy (CLSM) in conjunction with fluorescent viability staining. At concentrations of > or =2 mM, both EDTA and diethyldithiocarbamate killed c. 90-99.5% of the biofilm cell populations. Notably, a small fraction (c. 0.5-10%) of biofilm cells were able to withstand the highest concentrations of these antifungals that were tested (16 and 32 mM for EDTA and diethyldithiocarbamate, respectively). Interestingly, CLSM revealed that these surviving cells were irregularly distributed throughout the biofilm community. These data suggest that the use of chelating agents against biofilms of Candida spp. may be limited by the refractory nature of a variant cell subpopulation in the surface-adherent community.  相似文献   

9.
MMP-2/MMP-8 is established as one of the most important metalloenzymes for targeting cancer. A series of dihydropyrazothiazole derivatives (E1E18) bearing a salicylaldehyde group linked to Pyrazole ring were designed, synthesized, and evaluated for their pharmacological activity as MMP-2/MMP-8 inhibitors. Among them, compound E17 exhibited most potent inhibitory activity (IC50?=?2.80?μM for MMP-2 and IC50?=?5.6?μM for MMP-8), compared to the positive drug CMT-1 (IC50?=?1.29?μM). Compounds (E1E18) were scrutinized by CoMFA and CoMSIA techniques of Three-dimensional quant. structure-activity relationship (3D-QSAR), as well as a docking simulation. Moreover, treatment with compound E4 could induce MCF-7 cell apoptosis. Overall, the biological profile of E1E18 may provide a research basis for the development of new agents against cancer.  相似文献   

10.
Understanding the dynamics of biofilm development in response to chemical cues and signals is required toward the development of controllable biofilm-mediated bioprocesses. In this study, we report a new biofilm growth system that integrates a microfluidic gradient mixer with a biofilm growth chamber. The biofilm growth system allows biofilms to grow under defined solute gradients and enables nondestructive monitoring of the biofilm development dynamics in response to the defined gradients. The solute gradients generated in the system were simulated and then validated experimentally. We then demonstrated the applicability of the biofilm growth system in studying biofilm development under defined solute gradients. Specifically, we examined biofilm development of Shewanella oneidensis and Comamonas testosteroni under a defined calcium and nitrate gradient, respectively. Using two C. testosteroni strains (WDL7 and I2), we further demonstrated the applicability of our biofilm growth system to study the development of coculture biofilms under a defined solute gradient. Our results show that the biofilm growth system we have developed here can be a promising tool to reveal the dynamics of biofilm development in response to chemical cues and signals as well as the interorganism interactions in coculture biofilms.  相似文献   

11.
Abstract

In the present work, some surface properties of the fungi Scedosporium apiospermum, S. aurantiacum, S. minutisporum, and Lomentospora prolificans and their capability to adhere to and form a biofilm on diverse surfaces were evaluated. All four species had high conidial surface hydrophobicity and elevated electronegative zeta potentials. Abundant quantities of melanin were detected at the conidial surface, whereas sialic acid was absent. The numbers of non-germinated and germinated conidia adhered to poly-L-lysine-covered slides was higher than on glass after 4?h of fungi–surface contact. Additionally, after 72?h of interaction a typical biofilm structure had formed. Mature biofilms were also observed after 72?h on a nasogastric catheter (made from polyvinyl chloride), a late bladder catheter (siliconized latex), and a nasoenteric catheter (polyurethane). Interestingly, biofilm biomass increased considerably when the catheters had previously been incubated with serum. These results confirm that Scedosporium/Lomentospora spp. are capable of forming biofilms on diverse abiotic surfaces.  相似文献   

12.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

13.
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 103 per cell/per day in normal tissues and up to 105 lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10–75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase λ play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.  相似文献   

14.
An efficient four-component reaction of 6-amino-1,3-dimethyluracil, N,N-dimethylformamide dimethylacetal, 1-phenyl-3-(4-substituted-phenyl)-4-formyl-1H-pyrazoles and aromatic amines was conducted in the presence of [Bmim]FeCl4 ionic liquid as a promoting medium. This strategy provided a convenient route without any additional catalyst or metal salt under mild conditions. All the synthesized pyrazolo-pyrimido[4,5-d]pyrimidines derivatives were evaluated for their antibacterial, minimum bactericidal concentration (MBC), biofilm inhibition, intracellular ROS accumulation and protein leakage activities. The results revealed that among all the screened derivatives, the compounds 5c, 5i, 5l and 5m were quite promising with MIC values ranging between 3.9 and 15.6 μg/mL, while the MBC values were 2-fold the antibacterial activity values. The biofilm inhibition activity revealed that the compounds 5l and 5 m exhibited promising activity with IC50 values ranging between 1.8 and 8.2 μg/mL. It was observed that at a concentration of 0.5 μg/mL, the compound 5l treated biofilms of Micrococcus luteus showed increased levels of intracellular ROS accumulation. Further, the protein leakage study revealed that the Micrococcus luteus cells treated with compound 5l caused membrane permeability which resulted in protein leakage and subsequent bacterial cell death.  相似文献   

15.
Signal molecules are stimulators of multiple quroum-sensing virulence and biofilm formation. Small molecule analogues have been suspected as a potent inhibitor in therapeutic strategy. Herein, we synthesized a series of small molecule compounds from the 2, 8-bit derivatives of quinoline by Suzuki coupling reaction. We found that these compounds have the biofilm inhibitory effect in normal condition instead of phosphate limitation state. Furthermore, lacZ reporter strain assay and rhamnolipids as well as pyocyanin experiments showed that these compounds did not affect las and pqs system but reduced the expression of rhl. All these results suggest that quinoline derivatives can be treated as potent inhibitors against biofilm and reduce virulence through the rhl system. This research will be useful in designing new quorum sensing inhibitors to attenuate the infection of bacteria.  相似文献   

16.
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml?1) inhibited Trichosporon growth. RIT (100 μg ml?1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml?1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.  相似文献   

17.
Chun Yi 《Inorganica chimica acta》2007,360(11):3493-3498
An iridium complex coordinated with 2-phenylpyridine (ppy) and 8-hydroxyquinoline (q), ppy2Irq, was synthesized and its thermal stability, absorption, photoluminescence, crystal structure and electrophosphorescence were characterized. The melting point of this material reaches as high as 374 °C and does not suffer decomposition upon heating at high vacuum therefore can be well sublimated. When ppy2Irq was used as a guest emitting material in the electrophosphorescent device, the emission is 100% saturated red light starting at ∼600 nm, extending into the near-infrared region. The bathochromic shift, compared to the fluorescence and phosphorescence from Alq3, Ptq2 and Ir(ppy)3, was analyzed to originate from the triplet excited state of 8-hydroxyquinoline ligand and the crystal structure analysis excludes the origin of π-π intermolecular interactions.  相似文献   

18.
The limitation of pH inside electrode‐respiring biofilms is a well‐known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode‐respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Biotechnol. Bioeng. 2012; 109: 2651–2662. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In the current study, seven compounds (i.e. 17) were found to be novel activators for the Nε-acetyl-lysine deacetylation reaction catalyzed by human histone deacetylase 8 (HDAC8). When assessed with the commercially available HDAC8 peptide substrate Fluor-de-Lys®-HDAC8 that harbors the unnatural 7-amino-4-methylcoumarin (AMC) residue immediately C-terminal to the Nε-acetyl-lysine residue to be deacetylated, our compounds exhibited comparable activation potency to that of TM-2-51, the strongest HDAC8 activator reported in the current literature. However, when assessed with an AMC-less peptide substrate derived from the native HDAC8 non-histone substrate protein Zinc finger protein ZNF318, while our compounds were all found to be able to activate HDAC8 deacetylation reaction, TM-2-51 was found not to be able to. Our compounds also seemed to be largely selective for HDAC8 over other classical HDACs. Moreover, treatment with the strongest activator among our compounds (i.e. 7) was found to decrease the KM of the above AMC-less HDAC8 substrate, while nearly maintaining the kcat of the HDAC8-catalyzed deacetylation on this substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号