首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keratose (horny) sponges constitute a very difficult group of Porifera in terms of taxonomy due to their paucity of diagnostic morphological features. (Most) keratose sponges possess no mineral skeletal elements, but an arrangement of organic (spongin) fibers, with little taxonomic or phylogenetic information. Molecular phylogenetics have targeted this evolutionary and biochemically important lineage numerous times, but the conservative nature of popular markers combined with ambiguous identification of the sponge material has so far prevented any robust phylogeny. In the following study, we provide a phylogenetic hypothesis of the keratose order Dictyoceratida based on nuclear markers of higher resolution potential (ITS and 28S C-region), and particularly aim for the inclusion of type specimens as reference material. Our results are compared with previously published data of CO1, 18S, and 28S (D3-D5) data, and indicate the paraphyly of the largest dictyoceratid family, the Thorectidae, due to a sister group relationship of its subfamily Phyllospongiinae with Family Spongiidae. Irciniidae can be recovered as monophyletic. Results on genus level and implications on phylogenetic signals of the most frequently described morphological characters are discussed.  相似文献   

2.
Since early 2008, an increasing number of countries have ratified an international treaty to ban the application of antifouling (AF) coatings based on organotin compounds (eg tributyltin (TBT) and triphenyltin). As a result, the demand for environmentally friendly, non-toxic or low-toxicity AF compounds and technologies (green AF agents) has become an urgent reality. Marine coatings based on Cu2O and various other biocides have a negative impact on the environment and they must eventually be replaced by new, effective, and environmentally friendly AF compounds. This mini-review describes important AF compounds discovered from a variety of organisms from 2004 until mid 2009, and discusses recent and general trends in the discovery of AF compounds. Finally, a perspective on the future of AF compound development is presented. The discussion is aimed at updating scientists and engineers on the current challenges facing AF research.  相似文献   

3.
Marine compound database consists of marine natural products and chemical entities, collected from various literature sources, which are known to possess bioactivity against human diseases. The database is constructed using html code. The 12 categories of 182 compounds are provided with the source, compound name, 2-dimensional structure, bioactivity and clinical trial information. The database is freely available online and can be accessed at http://www.progenebio.in/mcdb/index.htm  相似文献   

4.

Ecological problems associated with current antifouling technologies have increased interest in the natural strategies that marine organisms use to keep their surfaces clean and free from fouling. Bacteria isolated from living surfaces in the marine environment have been shown to produce chemicals that are potential antifoulants. Active compounds from the cells and culture supernatant of two bacterial strains, FS‐55 and NudMB50–11, isolated from surface of the seaweed, Fucus serratus, and the nudibranch, Archidoris pseudoargus, respectively, were extracted using solid phase extraction. The extracts were combined with acrylic base paint resin and assayed for antifouling activity by measuring their ability to inhibit the growth of fouling bacteria. These formulations were found to be active against fouling bacteria isolated from marine surfaces. The formulation of antifouling paints that incorporate marine microbial natural products is reported here for the first time. This is a significant advance towards the production of an environmentally friendly antifouling paint that utilises a sustainable supply of natural biodegradable compounds.  相似文献   

5.
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.  相似文献   

6.
7.
Ascidians, invertebrates belonging to the subphylum Urochordata (Tunicata), are renowned for their great chemical diversity, and during the last 25 years, they have been shown to produce an array of cytotoxic molecules. Among the first six marine-derived compounds that have reached clinical trials as antitumor agents, three are derived from ascidians, as evidence of the high potential of these organisms as a new source of antitumor compounds. Reported in this communication are some recent results on the chemistry of Mediterranean ascidians; a number of new molecules with different structural features but all endowed with antiproliferative or cytotoxic activity are discussed. These results strongly evidence the highly significant role that Mediterranean ascidians natural products could play in anticancer drug discovery and development process.  相似文献   

8.
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.  相似文献   

9.
黏细菌的显著特征之一是能够合成结构多样、功能丰富的天然产物.模块化聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)途径是黏细菌合成天然产物的主要方式.与经典模块PKS/NRPS相比,黏细菌来源的模块化PKS/NRPS常表现出新颖的装配特征,显示出多样化的遗传加工潜能和装配产物结构多样性.本文综合归类分析了黏细菌来源的模块化PKS/NRPS遗传装配线类型及其对应化合物的生化结构特征,图文并茂地呈现了黏细菌在遗传、生化、组合生物合成、进化和药物开发领域的生机和潜能,并展望了基因组学时代带来的契机.  相似文献   

10.
Several plant-derived compounds have been screened by antioxidant assays, but many of these results are questionable, since they do not evaluate the pharmacologic parameters. In fact, the development of better antioxidants stills a great challenge. In vitro cell-based assays have been employed to assess the antioxidant effect of various compounds at subcellular level. Cell-based assays can also reveal compounds able to enhance the antioxidant pathways, but without direct radical scavenging action (which could not be detected by traditional assays). These methodologies are general of easy implementation and reproducible making them suitable for the early stages of drug discovery. Hydrogen peroxide, a nonradical derivative of oxygen, can be employed as an oxidative agent in these assays due its biochemical properties (presence of all biological systems, solubility) and capacity to induce cell death. Truthfully, if their limitations are understood (such as difference on cell metabolism when in in vitro conditions), these cell-based assays can provide useful information about the pathways involved in the protective effects of phytochemicals against cell death induced by oxidative stress, which can be exploited to develop new therapeutic approaches.  相似文献   

11.
Marine organisms produce a wide array of fascinating terpenoid structures distinguished by characteristic structural features. Certain structural classes, e.g. cembrane, chamigrene, amphilectane skeletons, and unusual functional groups such as isonitrile, isothiocyanate, isocyanate, dichloroimine and halogenated functionalities occur predominantly in marine metabolites. Especially striking is the frequent occurrence of sesterterpenes in marine organisms, and sponges must be considered as one of the prime sources of these C25 terpenoid compounds. In most cases however, these structural features are not strictly unique for marine natural products. The prominent biological activity of marine terpenes is evident in their ecological role in the marine environment, and makes them interesting as potential drugs. Several terpenoid compounds, e.g. eleutherobin, sarcodictyin, contignasterol derivatives, are in preclinical or clinical development. Despite the many structures known and their ecological and pharmacological importance, only a few biosynthetic studies on marine terpenoid compounds have been performed.  相似文献   

12.
天然产物防除海洋污损生物的研究进展   总被引:1,自引:0,他引:1  
天然防污剂是当前海洋污损生物防除的研究热点,本文综述了天然防污剂的种类和来源,以及天然防污剂的防除机理,并着重叙述了天然防污涂料配制时应关注的问题。  相似文献   

13.
Marine sponges (Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Recently, several studiesindicated that sponges are the most prolific source of biologically-active compounds produced by symbiotic microorganisms ratherthan by the sponges themselves. In the present study we characterized the bacterial symbionts from two Demospongiae, Irciniamuscarum and Geodia cydonium. We amplified 16S rRNA by PCR, using specific bacterial-primers. The phylogenetic analysisrevealed the presence of nine bacterial clones from I. muscarum and ten from G. cydonium. In particular, I. muscarum resultedenriched in Bacillus species and G. cydonium in Proteobacterium species. Since these bacteria were able to produce secondarymetabolites with potential biotechnological and biopharmaceutical applications, we hypothesized that I. muscarum and G. cydoniumcould be a considered as a “gold mine” of natural products.  相似文献   

14.
天然产物及其衍生物,包括基于天然产物药效基团结构设计的化合物,约占临床药物的50%以上。几个世纪以来,真菌天然产物的药用价值闻名于世。无论从市场前景还是人道主义角度,真菌来源的小分子药物都具有极高的应用价值。本篇综述总结了真菌天然产物在临床上的应用,并以他汀类药物的研发历程揭示了真菌来源小分子是化学合成药物研发的重要灵感源泉。本篇综述涵盖了真菌来源的药物小分子,包括天然药物、相关衍生物以及结构修饰药物。  相似文献   

15.
A growing number of marine fungi are the sources of novel and potentially life-saving bioactive secondary metabolites. Here, we have discussed some of these novel antibacterial, antiviral, antiprotozoal compounds isolated from marine-derived fungi and their possible roles in disease eradication. We have also discussed the future commercial exploitation of these compounds for possible drug development using metabolic engineering and post-genomics approaches.  相似文献   

16.
17.
抗污损海洋天然产物的开发及其作用机理研究进展   总被引:2,自引:0,他引:2  
钱培元 《生命科学》2012,(9):1026-1034
首先对近年发表在学术期刊Biofouling上的一篇关于抗污损化合物的综述做一简短总结。其次,突出介绍了对无脊椎污损生物附着和变态分子水平的调控机制的研究近来的进展。旨在给那些从事生物污损和抗污损技术研究的科研人员提供一定的帮助。  相似文献   

18.
The understanding of the greenhouse gas (GHG) emissions dimension in discussing the future of marine fuels makes it important to advance the current life cycle assessment (LCA) practice in this context. Previous LCA studies of marine fuels rely on general LCA models such as GREET and JEC well‐to‐wheels study. These models do not fully capture the various methane losses in the fuel supply chain. The primary goal of this LCA study is to compare the GHG emissions of heavy fuel oil and marine gas oil produced from Saudi crude oil to liquefied natural gas (LNG) in different global regions. A sensitivity analysis was performed to show how results may vary with non‐Saudi crudes. A secondary goal was to advance LCA of marine fuels by utilizing, for the first time, a set of bottom‐up engineering models that enable detailed analysis of specific oil and gas projects worldwide. The results show particular cases where LNG use in marine applications has a significant countereffect in terms of climate change compared to conventional marine fuels produced from a low‐carbon‐intensity crude oil. When the results are calculated based on a 20‐ versus 100‐year methane global warming potential, LNG appears noncompetitive for climate impact in marine applications.  相似文献   

19.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号