首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To investigate the effects of the medium and cryoprotective agents used on the growth and survival of Lactobacillus plantarum and Lactobacillus rhamnosus GG during freeze drying.
Methods and Results:  A complex medium was developed consisting primarily of glucose, yeast extract and vegetable-derived peptone. Trehalose, sucrose and sorbitol were examined for their ability to protect the cells during freeze drying. Using standardized amount of cells and the optimized freeze drying media, the effect of the growth medium on cell survival during freeze drying was investigated. The results showed that glucose and yeast extract were the most important growth factors, while sucrose offered better protection than trehalose and sorbitol during freeze drying. When the cells were grown under carbon limiting conditions, their survival during freeze drying was significantly decreased.
Conclusions:  A clear relationship was observed between cell growth and the ability of the cells to survive during the freeze drying process.
Significance and Impact of the Study:  The survival of probiotic strains during freeze drying was shown to be dependent on the cryoprotectant used and the growth medium.  相似文献   

2.
AIMS: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. METHODS AND RESULTS: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or on the surface of latex beads. Porcine mucin was bound by all 13 probiotic strains tested with important inter-strain differences; however, fetuin binding was similar (weak) for all 14 strains tested. Strongly positive (three) binding of bovine fibrinogen was expressed by strains from fermented food (Lactobacillus rhamnosus GG, L. casei Shirota and L. johnsonii La1) as well as by L. casei L.c., Lactobacillus sp. 2I3 and by L. plantarum LP. The other strains expressed moderate (2) or weakly positive (1) binding of bovine fibrinogen. Strongly positive (3) binding of porcine fibronectin was observed only with two strains; however, all other strains also bound this molecule. Bovine lactoferrin was bound to a higher extent than transferrins. SIGNIFICANCE AND IMPACT OF THE STUDY: Some animal strains (at least L. casei L.c. and Lactobacillus sp. 2I3) are comparable with the commercially used strains with respect to their ECM binding ability. As this feature is important for probiotic bacteria to be able to colonize intestine, these strains should be considered for their wider use in fermented feed (or probiotic preparations) for animals.  相似文献   

3.
Ze Hua Dong  Tao Liu 《Biofouling》2013,29(5):487-495
Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.  相似文献   

4.
Aims: Extracellular polymeric substances (EPS) are an important component of microbial biofilms, and it is becoming increasingly apparent that extracellular DNA (eDNA) has a functional role in EPS. This study characterizes the eDNA extracted from the novel activated sludge biofilm process of aerobic granules. Methods and Results: Exposing the sludge to cation exchange resin (CER) was used for the extraction of eDNA and intracellular DNA (iDNA) from aerobic granules. This was optimized for eDNA yield while causing minimal cell lysis. We then compared the DNA composition of these extractions using randomly amplified polymorphic DNA (RAPD) fingerprinting and PCR‐based denaturing gradient‐gel electrophoresis (DGGE). Upon the analysis of the genomic DNA and the 16S rRNA genes, differences were detected between the sludge biofilm eDNA and iDNA. Conclusions: Different bacteria within the biofilm disproportionally release DNA into the EPS matrix of the biofilm. Significance and Impact of the Study: The findings further the idea that eDNA has a functional role in the biofilm state, which is an important conceptual information for industrial application of biofilms.  相似文献   

5.
AIMS: To generate stable acid-resistant Bifidobacterium strains isolated from human subjects and characterize the phenotypic changes of the acid-resistant derivatives. METHODS AND RESULTS: The ability of 20 Bifidobacterium strains isolated from human faeces to survive to simulated gastrointestinal transit was evaluated, showing major reductions in viability (0.25-5.8 logarithmic units) because of gastric stress conditions. Six acid-sensitive strains belonging to the species Bifidobacterium longum and Bifidobacterium catenulatum were submitted to prolonged incubation at pH 2.0 to generate acid-resistant strains. The acid-sensitive and acid-resistant derivative strains were characterized to determine the changes associated with the acquisition of an acid-tolerant phenotype. The acid-resistant derivatives showed better ability to grow in the presence of bile salt (1-3%) and NaCl (6-10%) and higher resistance at elevated temperatures (60-70 degrees C, 10 min) than the parental strains. The acid-resistant derivatives displayed higher fermentative ability, and enzymatic activities. These strains also showed higher sensitivity to most of the tested antibiotics than the parental strains. CONCLUSIONS: The stress tolerance of B. longum and B. catenulatum strains was improved by prolonged exposure to acid stress conditions. Some of the generated strains also seemed to have enhanced metabolic properties of relevance for probiotic applications. SIGNIFICANCE AND IMPACT OF THE STUDY: The successful use of prolonged exposures to acid stress to improve the stability of human bifidobacteria indicates that this strategy could be useful for the production of robust probiotic strains, but involves other phenotypic changes that required an individual characterization.  相似文献   

6.
Cyanobacterial extracellular polymeric substances (EPS) are mainly composed of high-molecular-mass heteropolysaccharides, with variable composition and roles according to the microorganism and the environmental conditions. The number of constituents – both saccharidic and nonsaccharidic – and the complexity of structures give rise to speculations on how intricate their biosynthetic pathways could be, and how many genes may be involved in their production. However, little is known regarding the cyanobacterial EPS biosynthetic pathways and regulating factors. This review organizes available information on cyanobacterial EPS, including their composition, function and factors affecting their synthesis, and from the in silico analysis of available cyanobacterial genome sequences, proposes a putative mechanism for their biosynthesis.  相似文献   

7.
Scanning electron microscopy revealed that collapsed extracellular polymeric substances (EPS) surrounded bacteria present in granular sludge. Treatment of granular sludge with whole-cell antiserum and staining with polycationic ferritin demonstrated that bacteria were enveloped by extensive EPS. Antibody stabilization permitted a visualization of the EPS which more closely resembled its natural hydrated state. The EPS was seen to completely fill the intercellular spaces in the microcolonies. Both pure and mixed microcolonies were observed to be enclosed by EPS. The presence of these large amounts of EPS indicates that this extracellular layer is important in maintaining the structural integrity of granular sludge.  相似文献   

8.
Extracellular polymeric substances (EPS) produced from a strain of Rhizobium etli demonstrated an ability to bind a variety of metals. Cells and capsular EPS rapidly bound Mn2+ ions preferentially to Pb2+ and Cu2+, but also showed an affinity for Pb2+. The binding capabilities of soluble EPS were affected by its extraction and processing. The results suggest potential applications in the field of bioremediation.  相似文献   

9.
海藻糖对猪精子冷冻真空干燥保存效果的影响   总被引:1,自引:0,他引:1  
猪精子经冷冻干燥后,在光学显微镜和电子显微镜下观察其超微结构,并借助辅助生殖技术将其注入猪卵母细胞后,进一步观察受精卵的发育情况。结果表明:海藻糖组雄原核形成率 (68.52%)、卵裂率 (59.17%) 和囊胚率 (19.16%) 优于EDTA组 (64.59%、56.26%和15.62%) 和对照组 (35.36%、52.33%和8.60%) (P<0.05);海藻糖组的冷冻真空干燥猪精子分别在4℃下保存60、120、180 d,雄原核形成率、卵裂率和囊胚率均无显著差异 (P>0.05);海藻糖组的冷冻真空干燥猪精子复水化后孵育1 h和2 h,卵裂率、卵裂率和囊胚率均差异显著 (P<0.05);海藻糖处理组与EDTA处理组中的冷冻真空干燥猪精子分别在4℃和?20℃下保存后各处理组间精子形态差异不显著 (P>0.05);海藻糖组中B级冷冻真空干燥精子百分数显著多于EDTA处理组 (P<0.05)。超微结构分析表明,冷冻真空干燥猪精子的损伤主要表现在顶体和颈部的肿胀与缺损、尾部断裂。  相似文献   

10.
Biofilm secreted by microalgae are extracellular polymeric substances (EPSs) composed mainly of polysaccharides, proteins, nucleic acids and lipids. These EPSs immobilize the cells and stabilize biofilm, mediating adhesion towards solid surfaces. The EPSs valorization through industrial exploitations and scientific works is becoming more popular, but the bottleneck of such studies is the lack of consensus among researchers on the selection of detection techniques to be used, especially for novice researchers. It is a daunting task for any inexperienced researcher when they fail to identify the right tools needed for microalgal biofilm studies. In this review, a well-refined analysis protocol about microalgal biofilm and EPSs were prepared including its extraction and characterization. Pros and cons of various detection techniques were addressed and cutting-edge methods to study biofilm EPSs were highlighted. Future perspectives were also presented at the end of this review to bridge research gaps in studying biofilm adhesion via EPSs production. Ultimately, this review aims to assist novice researchers in making the right choices in their research studies on microalgal biofilms in accordance to the available technologies and needs.  相似文献   

11.
Biofouling, the combined effect of microorganism and biopolymer accumulation, significantly reduces the process efficiency of membrane bioreactors (MBRs). Here, four biofilm components, alpha-polysaccharides, beta-polysaccharides, proteins and microorganisms, were quantified in MBRs. The biomass of each component was positively correlated with the transmembrane pressure increase in MBRs. Proteins were the most abundant biopolymer in biofilms and showed the fastest rate of increase. The spatial distribution and co-localization analysis of the biofouling components indicated at least 60% of the extracellular polysaccharide (EPS) components were associated with the microbial cells when the transmembrane pressure (TMP) entered the jump phase, suggesting that the EPS components were either secreted by the biofilm cells or that the deposition of these components facilitated biofilm formation. It is suggested that biofilm formation and the accumulation of EPS are intrinsically coupled, resulting in biofouling and loss of system performance. Therefore, strategies that control biofilm formation on membranes may result in a significant improvement of MBR performance.  相似文献   

12.
Aims: To evaluate the efficacy of a novel microencapsulation procedure using whey protein and pectin to improve the survival rate of Lactobacillus rhamnosus CRL 1505 to low pH and bile. Methods and Results: Lactobacillus rhamnosus CRL 1505 was encapsulated by ionotropic gelation using pectin (PE) and pectin–whey protein (PE–WP). Both types of beads (MCPE/WP and MCPE–WP/WP) were covered with a layer of whey protein by complex coacervation. The noncapsulated lactobacilli were not sensitive to bile salts but to acid. Both microparticles protected Lact. rhamnosus CRL 1505 at pH 2·0, but only MCPE/WP was effective at pH 1·2. Conclusions: The combination of ionotropic gelation and complex coacervation techniques is efficient to obtain microcapsules of pectin covered with whey proteins. The MCPE/WP beads were more stable than the MCPE–WP/WP beads in simulated gastric conditions, thus offering better protection to Lact. rhamnosus CRL 1505 at low pH. Significance and Impact of the Study: Pectin beads with a whey protein layer (MCPE/WP) could be used as probiotic carrier in functional foods of low pH (e.g. apple juice), thus protecting Lact. rhamnosus CRL 1505 against the stressful conditions of the gastric tract.  相似文献   

13.
In this study, we measured the effect of EPS on Cd and proton adsorption behaviors by measuring the extent of adsorption onto biomass with and without the EPS removed via a cation exchange resin. We conducted both Cd adsorption experiments and potentiometric titrations of biomass using three common bacterial species: one Gram-positive (Bacillus subtilis) and two Gram-negative (Shewanella oneidensis, Pseudomonas putida) species. The Cd adsorption experiments were conducted as a function of metal loading in order to probe whether environmentally-low metal loadings lead to different adsorption mechanisms and roles for EPS than the higher metal loadings of most previous adsorption studies. We suspended each biomass sample in a solution of dissolved Cd in 0.01?M NaClO4 at metal loadings of 1, 2, 5, and 74?μmol/g. Surface complexation modeling (SCM) was used to determine stability constants for the important Cd-bacteria complexes, and the effect of metal loading on the resulting calculated stability constant values was determined.

In general, the measured bulk Cd adsorption behavior is unaffected by EPS removal. However, our potentiometric titration results suggest that EPS removal does alter the distribution of site types, but not the mass-normalized total site concentration within the biomass. SCM suggests that high affinity sulfhydryl sites control Cd binding under low metal loading conditions for B. subtilis and P. putida, and that sulfhydryl sites are present both on the cells and within the EPS for these species. Conversely, the SCM results suggest that Cd-sulfhydryl binding is un-important on the EPS of S. oneidensis.  相似文献   


14.
The objective of this study is to examine the effects of the most widely used high-molecular-weight cryoprotectants on the coagulation system. Dextran, hydryoxyethyl starch (HES), polyvinyl pyrrolidone (PVP), polyethylene glycol (PEG), and albumin were added at different concentrations in the range between 0.01-1% (w/v) to solvent/detergent-treated plasma. Using a STA/STA Compact coagulation analyzer the following clotting tests were performed: prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), Factor V, and Factor VIII percentage of activity. PVP and PEG caused a significant increase in APTT, a decrease in Factor VIII percentage of activity, and a slight decrease in TT, while PT and Factor V percentage of activity remained unchanged. Dextran, HES, and albumin did not effect the clotting tests. The effect of high-molecular-weight cryoprotectants on platelets was assessed by platelet-induced clot retraction (PICR) and aggregation with thrombin and agglutination with ristocetin. Platelet aggregation and agglutination were unaffected by all cryoprotectants tested; however, PICR was significantly reduced in the presence of PVP or PEG. Possible mechanisms by which PVP and PEG interfere with the coagulation system are discussed. We also raise issues concerning the development of one-step blood cryopreservation techniques which do not require cryoprotectant removal prior to transfusion.  相似文献   

15.
Biofilms coat the exterior of most water-exposed interfaces, from the surfaces of sediments and rocks to the interior walls of fluid transport systems and even medical and dental apparatus. Composed of a diverse assemblage of microbial species growing in a matrix of extracellular polymeric substances (EPS), biofilms are well-known for their ability to sorb metals and nucleate mineral phases. In this study, purified alginate, a major polysaccharide component of some algal and bacterial EPS, was studied to ascertain its chemical reactivity towards dissolved cadmium and protons, and thus better constrain its role in overall EPS reactivity. FTIR analysis and compositional constraints based on known molecular structure indicate that alginate’s geochemical behaviour is dominated by a single carboxyl functional group. Correspondingly, potentiometric titration data were best fit using a single functional group acidity constant (pKa) and site concentration of 3.98 ± 0.01 and 1.728 ± 0.02 mol/kg, respectively, which are in agreement with typical carboxyl acidity (pKa 3–6) and carboxyl functional group concentration based on alginate polymer composition. The logarithm of the Cd-carboxyl complexation constant (log K) was determined to be ?0.52 ± 0.22, lower than carboxyl-Cd stability constants reported from independent studies of isolated microbes. Together, these results place important constraints on organic matrix contributions to overall biofilm reactivity.  相似文献   

16.
17.
藻类胞外聚合物(extracellular polymeric substances, EPS)是一种复杂的高分子聚合物,主要由多糖、蛋白质等物质组成。由于EPS具有独特的结构、大的比表面积及含有大量官能团等物理-化学特性,使其在污水处理及微藻生物质的絮凝回收等方面都有着非常重要的作用。本文系统介绍了EPS的组成及特性,重点论述了影响藻类EPS产生的生物因素及非生物因素,如光照、营养盐、pH及温度等,并对EPS在污水处理及生物絮凝方面的应用进行了总结。对藻类EPS产生机制及机理的深入研究有望为微藻提供更广阔的应用前景。  相似文献   

18.
Zheng Xue  Huijie Lu 《Biofouling》2014,30(7):813-821
Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.  相似文献   

19.
Aims:  To investigate the abilities of various probiotic bacteria to produce volatile sulfur compounds (VSCs) relevant to food flavour and aroma.
Methods and Results:  Probiotic strains ( Lactobacillus acidophilus NCFM, Lactobacillus plantarum 299v, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC55730 and L. reuteri BR11), Lactobacillus delbrueckii ATCC4797, L. plantarum ATCC14917 and Lactococcus lactis MG1363 were incubated with either cysteine or methionine. Volatile compounds were captured, identified and quantified using a sensitive solid-phase microextraction (SPME) technique combined with gas chromatography coupled to a pulsed flame photometric detector (SPME/GC/PFPD). Several VSCs were identified including H2S, methanethiol, dimethyldisulfide and dimethyltrisulfide. The VSC profiles varied substantially for different strains of L. plantarum and L. reuteri and it was found that L. reuteri ATCC55730 and L. lactis MG1363 produced the lowest levels of VSCs ( P  < 0·05). Levels of VSCs generated by bacteria were found to be equivalent to, or higher than, that found in commercial cheeses.
Conclusions:  Several probiotic strains are able to generate considerable levels of VSCs and substantial variations in VSC generating potential exists between different strains from the same species.
Significance and Importance of the Study:  This study demonstrates that probiotic bacteria are able to efficiently generate important flavour and aroma compounds and therefore has implications for the development of probiotic containing foods.  相似文献   

20.
Aims: To isolate and characterize the bacteriocin‐producing bacteria (BPB) from the gastrointestinal tract of broiler chickens for probiotic use. Methods and Results: In total, 291 bacterial strains were isolated from broilers and screened for bacteriocin‐producing ability. The bacteriocins produced by Enterococcus faecium SH 528, Ent. faecium SH 632 and Pediococcus pentosaceus SH 740 displayed inhibitory activity against pathogens including Clostridium perfringens and Listeria monocytogenes. Activity of the bacteriocins remained unchanged after 30 min of heat treatment at 60°C or exposure to organic solvents, but diminished after treatment with proteolytic enzymes. PCR was used to detect the structural genes enterocin A and B in SH 528, enterocin L50 and P in SH 632, and pediocin PA‐1 in SH 740. Most of them were resistant to 0·5% bile salts and remained viable after 2 h at pH 3·0. Ent. faecium SH 528 exhibited the highest amylase activity among the strains tested. Conclusions: We selected Ent. faecium SH 528 and SH 632 and Ped. pentosaceus SH 740 by probiotic selection criteria including inhibition activity against pathogens. Significance and Impact of the Study: The isolated BPB could potentially be used in the poultry industry as probiotics to control pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号