共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparison of movement and metabolism of indole-3-acetic acid and indole-3-butyric acid in mung bean cuttings 总被引:2,自引:0,他引:2
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA. 相似文献
2.
Levels of endogenous indole-3-acetic acid and indole-3-acetylaspartic acid during adventitious root formation in pea cuttings 总被引:6,自引:0,他引:6
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue. 相似文献
3.
The influence of the extraction procedure on yield of indole-3-acetic acid in plant extracts 总被引:1,自引:0,他引:1
Different types of plant material, including both dry and swollen maize kernels, swollen bean seeds, bean seedlings and dry rose seeds, were extracted by different methods and the yield of IAA was determined with the indolo-α-pyrone method. Extraction of dry maize kernels during short time experiments, varying from 3 to 24 h, gave the highest IAA yield when methanol was the extractant and a significant lower yield when diethyl ether or dichloromethane were used. The duration of the extraction period increased the yield with all the extractants. Progressive extractions for several days or weeks had little effect on the yield when 100% acetone was used in contrast to methanol and ether as extractants, which increased the yield during prolonged extraction. Extractions of tissue treated to 100°C for 1 h contradicted the hypothesis that IAA is enzymatically liberated during ether extraction. Water in the extractant solvents increased the yields. This was most pronounced when aqueous acetone was used instead of 100% acetone. Increased extraction temperature augmented the IAA yields. The yield of IAA from other types of tissue extracted with methanol for periods of 3 or 24 h was, however, independent of the duration of the extraction time. This indicates that some tissues contain less not easily extractable IAA than dry maize kernels. The terms “free” and “bound” IAA are discussed; they should be replaced by “easily extractable” and “not easily extractable” IAA. The results also show that IPyA in vitro can partly be converted to IAA during extraction and fractionation. 相似文献
4.
Regulation of enzymic oxidation of indole-3-acetic acid by phenols: Structure-activity relationships
Mono- and diphenols were tested for their effects on the decarboxylation of [1-14C]IAA catalysed by purified horseradish peroxidase (EC 1.11.1.7) in the presence or absence of 2,4-dichlorophenol (DCP). The number of hydroxyl groups and their position relative to each other and the nature and position of other substituents on the aromatic ring were found to affect the activity. Although the effects were complex, the following generalizations may be made. (1) Monophenols produce activation when no other cofactor is present. p-Substituted monophenols are more active than o- or m-compounds. In the presence of DCP, the activity varies from slight activation to strong inhibition. (2) m-Diphenols also produce activation in the absence of other cofactors while o- and p-diphenols, with the exception of 3,4-dihydroxyacetophenone and 3,4-dihydroxypropiophenone, produce strong inhibition in the presence or absence of DCP. The o-diphenolsare degraded in the IAA-oxidizing enzyme system and thus produce only a temporary inhibition. (3) m-Diphenols and 3,4-dihydroxyacetophenone produce a sustained inhibition in the presence of DCP. (4) Substitution at position 2 significantly alters the activity of m-diphenols. (5) O-Methylation alters the activity of most o-diphenols. In the absence of DCP, o-methoxyphenols and certain other phenols such as 3,4-dihydroxyacetophenone and 2,6-dihydroxyacetophenone either promote or inhibit IAA oxidation depending on concentration. 相似文献
5.
Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene 总被引:1,自引:0,他引:1
Brassinosteroid (BR)-induced rice (Oriza sativa L.) lamina joint (RLJ) inclination and its relationship to indole-3-acetic acid (IAA) and ethylene were investigated using BR isolated from beeswax. The effect of BR on RLJ inclination was time- and concentration-dependent. Etiolated lamina were more sensitive to BR than green lamina. The BR-induced inclination was accompanied by increased lamina fresh weight, total water content, free-water content, proton extrusion and ethylene production, and decreased bound-water content. Lamina dry weight was not changed. The inclination was due to greater expansion of the adaxial cells relative to the dorsal cells in the lamina joint. This response was caused by BR and/or BR-induced signal(s) that were transported from the leaf sheath to the leaf blade. Both BR-induced RLJ inclination and ethylene production were inhibited by cobalt chloride (CoCl2), an inhibitor of ACC oxidase. BR-induced inclination was much higher than that of IAA, and was inhibited by high concentration of 2,3,5-triiodobenzoic acid (TIBA), an inhibitor of IAA transport. A synergistic effect was observed between BR and IAA. These results suggest that the effects of BR on RLJ inclination and pulvinus cell expansion may be resulted from BR-increased water potential and proton extrusion in the lamina. The BR-induced RLJ inclination may involve the action of ethylene but may be independent of IAA.Abbreviations BR
brassinolide or brassinosteroid(s)
- IAA
indole-3-acetic acid
- TIBA
2,3,5-triiodobenzoic acid
- RLJ
rice lamina joint 相似文献
6.
A new enzyme, named indole-3-aldehyde oxidase (IAldO), was identified in citrus ( Citrus sinensis L. Osbeck cv. Shamouti) leaves. The enzyme was partially purified by (NH4 )2 SO4 fractionation. Sephadex G-200 gel filtration and DEAE-cellulose ion exchange chromatography. IAldO catalyzes the oxidation of indole-3-aldehyde (IAld) to indole-3-carboxylic acid (ICA) with the production of H2 O2 . The enzyme is highly specific for IAld. The apparent KM of the enzyme for IAld is 19 μ M . The optimum oxidation of IAld occurs at pH 7. 5. The molecular mass of the enzyme, as determined by Sepharose-6B gel filtration, is about 200 kDa. Based on inhibitor studies, it is concluded that IAldO is not a flavin-linked oxidase and there is no requirement for free sulfhydryl groups or divalent cations for maximum activity. The enzyme is strongly inhibited by benzaldehyde. Ethylene pretreatment, wounding and aging of leaf tissues did not affect enzyme activity, suggesting that the enzyme is constitutive in citrus tissues. 相似文献
7.
Tsung T. Lee Alvin N. Starratt John J. Jevnikar Albert Stoessl 《Phytochemistry》1980,19(11):2277-2280
Previously we reported two metabolites of the insecticide carbofuran as persistent inhibitors of the peroxidase-catalysed oxidtion ofindole-3-acetic acid. In searching for more active inhibitors of this type, we have found that 5-hydroxy-2,2-dimethylchromene (β-tubanol), 2′,6′-dihydroxycetophenone oxime, 5-hydroxy-2,2-dimethylchroman, 2′,6′-dihydroxyacetophenone and 2,6-dihydroxybenzoic acid methyl ester were more active than the carbofuran metabolite 7-hydroxy-2,2-dimethyl-3-oxo-2,3-dihydrobenzofuran. Resorcinol, 5-hydroxy-2,2-dimethylchroman-4-one, 3-hydroxy-5-methoxy-2,2-dimethylchroman-4-one and 5-hydroxy-2-methylchrom-4-one were also inhibitory but with less activity. The new inhibitors differed from the well-known phenolic inhibitors such as caffeic acid in inhibition kinetics as demonstrated by the rate of disappearance of indole-3-acetic acid, the rate of formation of the oxidation products, and the transient spectral change in the enzyme. 相似文献
8.
Indole-3-methanol is a product of indole-3-acetic acid metabolism in wheat leaves ( Triticum compactum Host., cv. Little Club). It leads either to the production of the corresponding aldehyde and carboxylic acid, to the production of a polar glucoside which releases indole-3-methanol on β-glucosidase treatment, or to an unidentified apolar product on mild alkaline hydrolysis in aqueous methanol. With reference to a published pathway of indole-3-acetic acid degradation, the results provide evidence for a prominent role of indole-3-methanol and also for the occurrence of co-oxidation processes in wheat leaves involving indole-3-acetic acid and phenolic cosubstrates. 相似文献
9.
Indole-3-acetic acid (IAA) and indole-3-ethanol (IEt) were identified in immature seeds of Pinus sylvestris L. by combined gas chromatography-mass spectrometry. Indole-3-methanol was tentatively identified using multiple ion monitoring. Anatomical investigations of seeds, as well as measurements of free and alkali-hydrolysable IAA and IEt, were made during seed development and germination. Levels of free IAA and IEt decreased during seed development. In the later stages of seed maturation most IAA and IEt were present in alkali-hydrolysable forms. Bound IAA and bound IEt rapidly decreased during germination, while levels of free IAA and IEt increased dramatically for a short period. 相似文献
10.
Snježana Antoli´ Branka Salopek Biserka Kojić-Prodić Volker Magnus Jerry D. Cohen 《Plant Growth Regulation》1999,27(1):21-31
The dichlorinated indole-3-acetic acids: 4,5-Cl2-IAA, 4,6-Cl2-IAA, 4,7-Cl2-IAA, 5,6-Cl2-IAA, 5,7-Cl2-IAA and 6,7-Cl2-IAA were synthesized and characterized by X-ray structure analysis to unambiguously identify the substances for bioassays required to establish structure activity relationships of auxins and their analogues. Straight-growth tests were performed on Avena sativa coleoptiles to correlate their auxin activity with molecular properties which could reveal information on the topology of the auxin binding site. Structure/activity correlations revealed that the 5,6-Cl2-IAA molecule, by virtue of its size and shape, fits particularly well into the active site cavity of the receptor protein. The main contact of the substrate or inhibitor in the receptor active site via the carboxylic group determines their orientation in the active site cavity. As a consequence, the 5,6-substituted sites protrude into the widest part of the active site whereas the 7-, 4-, and 5-substituted sites are oriented towards the narrowest part of the active site. These topological parameters are in agreement with the high auxin activity of 5,6-Cl2-IAA and the low activity of 4,7-Cl2-IAA. 相似文献
11.
Interaction of ethylene with indole-3-acetic acid in regulation of rooting in pea cuttings 总被引:1,自引:0,他引:1
Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high pressure liquid chromatography with fluorimetric detection (HPLC). Concentrations of indole-3-acetylaspartic acid (IAAsp) in the stem bases were also determined using HPLC. The ACC treatment had little effect on the IAA level in the base measured after 24 h, but caused a considerable decrease during the 3 following days. IAAsp increased in the base on days 1, 2 and 3 and then declined. The build up of IAAsp in the base was not affected by ACC during the first two days of the treatment, but later this conjugate decreased more rapidly than in controls. No effect of the ACC treatment was found on the level of IAA in the apex. IAA (1 µM) applied to the cuttings during 24 h reduced the number of roots formed. The possibility that IAA-induced ethylene is involved in this response was investigated.Our results support earlier evidence that the inhibitory effect of ethylene on rooting in pea cuttings is due to decreased IAA levels in the rooting zone. The inhibitory effect of applied IAA is obtained if the internal IAA level is maintained high during the first 24 h, whereas stimulation of rooting occurs if the internal IAA level remains high during an extended period of time. Our results do not support the suggestion that ethylene mediates the inhibitory effect of applied IAA. 相似文献
12.
13.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid. 相似文献
14.
Immunocytochemical localization of indole-3-acetic acid in primary roots of Zea mays 总被引:1,自引:0,他引:1
Colloidal gold-labelled antibody was used to localize indole-3-acetic acid in caps of primary roots of Z. mays cv. Kys. Gold particles accumulated on the nucleus, vacuoles, mitochondria, and some dictyosomes and dictyosome-derived vesicles. This is the first localization of indole-3-acetic acid in dictyosomes and dictyosome-derived vesicles and indicates that dictyosomes and vesicles constitute a pathway for indole-3-acetic acid movement in and secretion from root cap cells. Our findings provide cytochemical evidence to support the hypothesis that indole-3-acetic acid plays an important role in root gravitropism. 相似文献
15.
Pine seedlings ( Pinus sylvestris L.) were grown in a growth chamber under simulated summer conditions to an age of eight weeks after the beginning of seed germination. Single seedlings were analyzed for fresh weight, shoot and root lengths, and content of indole-3-acetic acid (IAA). The first three variables were normally distributed with standard deviations of 29%, 17% and 18%, respectively. The IAA content had a standard deviation of 39%, and this variable was not normally distributed. If this finding is of general significance, population variation must be considered when experiments involving IAA analyses are planned, and statistical methods based on a normally distributed population cannot be used to evaluate the result of such analyses unless samples of at least 20–30 individuals are analyzed. There were no correlations between the content of IAA and any of the three other variables. The content of IAA showed pronounced diurnal changes, rising from 15 ng g−1 (fresh weight) in the morning to 42 ng g−1 in the late evening. The initial rate of change was about 10% h−1 . Obviously, short-term fluctuations must be checked if long-term changes in IAA content are to be studied. IAA could also be released from the acidic buffer fraction by means of alkaline hydrolysis. This "bound alkali-hydrolysable" IAA did not show short-term fluctuations. 相似文献
16.
17.
The use of ring-labelled, pentadeutero IAA as an internal standard in selected ion monitoring analysis of Douglas fir seedlings revealed an estimate of IAA which was nearly an order of magnitude smaller than that reported earlier. 相似文献
18.
Mami Takei Syota Kogure Chiaki Yokoyama Yoshiaki Kouzuma 《Bioscience, biotechnology, and biochemistry》2019,83(1):129-136
Auxin is thought to be an important factor in the induction of galls by galling insects. We have previously shown that both galling and nongalling insects synthesize indole-3-acetic acid (IAA) from tryptophan (Trp) via two intermediates, indole-3-acetaldoxime (IAOx) and indole-3-acetaldehyde (IAAld). In this study, we isolated an enzyme that catalyzes the last step “IAAld → IAA” from a silk-gland extract of Bombyx mori. The enzyme, designated “BmIAO1”, contains two 2Fe–2S iron–sulfur-cluster-binding domains, an FAD-binding domain, and a molybdopterin-binding domain, which are conserved in aldehyde oxidases. BmIAO1 causes the nonenzymatic conversion of Trp to IAAld and the enzymatic conversion of IAOx to IAA, suggesting that BmIAO1 alone is responsible for IAA production in B. mori. However, a detailed comparison of pure BmIAO1 and the crude silk-gland extract suggested the presence of other enzymes involved in IAA production from Trp.
Abbreviations: BA: benzoic acid; CE: collision energy; CXP: collision cell exit potential; DP: declustering potential; IAA: indole-3-acetic acid; IBI1: IAA biosynthetic inhibitor-1; IAAld: indole-3-acetaldehyde; ICA: indole-3-carboxylic acid; IAOx: indole-3-acetaldoxime; IEtOH: indole-3-ethanol; LC–MS/MS: liquid chromatography–tandem mass spectrometry; Trp: tryptophan 相似文献
19.
20.
Effects of phenolic substances on metabolism of exogenous indole-3-acetic acid in maize stems 总被引:1,自引:0,他引:1
T. T. LEE 《Physiologia plantarum》1980,50(2):107-112
Four-day-old stem segments of Zea mays L. cv. Seneca 60 were treated sequentially with phenolic substances and indole-3-acetic [2-14C] acid ([2-14C]IAA). Formation of bound IAA was rapid, but a pretreatment with p-coumaric acid, ferulic acid or 4-methylumbelliferone decreased the level of bound IAA. The decrease is not likely related to the effect of the phenolics on enzymic oxidation of IAA, since the level of free IAA was not limiting and the activity of ferulic acid in enzymic oxidation of IAA is different from that of p-coumaric acid and 4-methylum-belliferone. Apparently these compounds inhibited the formation of bound IAA and consequently caused an accumulation of free IAA. In contrast, caffeic acid, protocatechuic acid and 2,3-dihydro-2, 2-dimethyl-7-benzofuranol had little effect. After the uptake of IAA there was a slow but steady incorporation of the radioactivity into the 80% ethanol-insoluble, 1 M NaOH-soluble fraction. Phenolic substances also affected this process. The compounds which are cofactors of IAA-oxidase increased the incorporation while those which are inhibitors of IAA-oxidase decreased the incorporation. Results suggest that the phenolics also affected the enzymic oxidation of IAA in vivo in the same way as in vitro. 相似文献