首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis glutamine P-Rib-PP amidotransferase contains a [4Fe-4S] cluster which is essential for activity. The enzyme also undergoes removal of 11 NH2-terminal residues from the primary translation product in vivo to form the active enzyme. It has been proposed that oxidative inactivation of the FeS cluster in vivo is the first step in degradation of the enzyme in starving cells. Four mutants of amidotransferases that alter cysteinyl ligands to the FeS cluster or residues adjacent to them have been prepared by site-directed mutagenesis, expressed in Escherichia coli, and characterized (Makaroff, C. A., Paluh, J. L., and Zalkin, H. (1986) J. Biol. Chem. 261, 11416-11423). These mutations were integrated into the B. subtilis chromosome in place of the normal purF gene. Inactivation and degradation in vivo of wild type and mutant amidotransferases were characterized in these integrants. Mutants FeS1 (C448S) and FeS2 (C451S) failed to form active enzyme, assemble FeS clusters, or undergo NH2-terminal processing. The immunochemically cross-reactive protein produced by both mutants was degraded rapidly (t1/2 = 16 min) in exponentially growing cells. In contrast the wild type enzyme was stable in growing cells, and activity and cross-reactive protein were lost from glucose-starved cells with a t1/2 of 57 min. Mutant FeS3 (F394V) contained an FeS cluster and was processed normally, but had only about 40% of normal specific activity. The FeS3 enzyme was also inactivated by reaction with O2 in vitro about twice as fast as the wild type. The amidotransferase produced by the FeS3 integrant was stable in growing cells but was inactivated and degraded in glucose-starved cells more rapidly (t1/2 = 35 min) than the wild type enzyme. Mutant FeS4 (C451S, D442C) also contained an FeS cluster and was processed; the enzyme had about 50% of wild type-specific activity and reacted with O2 in vitro at the same rate as the wild type. Inactivation and degradation of the FeS4 mutant in vivo in glucose-starved cells proceeded at a rate (t1/2 = 45 min) that was somewhat faster than normal. The correlation between absence of an FeS cluster or enhanced lability of the cluster to O2 and increased degradation rates in vivo supports the conclusions that stability of the enzyme in vivo requires an intact FeS cluster and that O2-dependent inactivation is the rate-determining step in degradation of the enzyme. The fact that mutant FeS3 was processed normally but degraded rapidly argues against a role for NH2-terminal processing in controlling degradation rates.  相似文献   

2.
Glutamine phosphoribosylpyrophosphate amidotransferase is stable in growing cells, but is inactivated in an oxygen-dependent process at various rates in starving or antibiotic-treated cells. On the basis of studies of the purified enzyme, we suggested (D.A. Bernlohr and R.L. Switzer, Biochemistry 20:5675-5681, 1981) that the inactivation in vivo was regulated by substrate stabilization and a competition between stabilizing (AMP) and destabilizing (GMP, GDP, and ADP) nucleotides. This proposal was tested by measuring the intracellular levels of these metabolites under cultural conditions in which the stability of the amidotransferase varied. The results established that the stability of amidotransferase in vivo cannot be explained by the simple interactions observed in vitro. Metabolite levels associated with stability of the enzyme in growing cells did not confer stability under other conditions, such as ammonia starvation or refeeding of glucose-starved cells. The data suggest that a previously unrecognized event, possibly a covalent modification of amidotransferase, is required to mark the enzyme for oxygen-dependent inactivation.  相似文献   

3.
Inactivation of glutathione peroxidase by superoxide radical   总被引:28,自引:0,他引:28  
The selenium-containing glutathione peroxidase, when in its active reduced form, was inactivated during exposure to the xanthine oxidase reaction. Superoxide dismutase completely prevented this inactivation, whereas catalase, hydroxyl radical scavengers, or chelators did not, indicating that O2 was the responsible agent. Conversion of GSH peroxidase to its oxidized form, by exposure to hydroperoxides, rendered it insensitive toward O2. The oxidized enzyme regained susceptibility toward inactivation by O2 when reduced with GSH. The inactivation by O2 could be reversed by GSH; however, sequential exposure to O2 and then hydroperoxides caused irreversible inactivation. Reactivity toward CN- has been used as a measure of the oxidized form of GSH peroxidase, whereas reactivity toward iodoacetate has been taken as an indicator of the reduced form. By these criteria both O2 and hydroperoxides convert the reduced form to oxidized forms. A mechanism involving oxidation of the selenocysteine residue at the active site has been proposed to account for these observations.  相似文献   

4.
Reaction of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase with 6-diazo-5-oxo-L-norleucine resulted in complete loss of its ability to catalyze glutamine-dependent phosphoribosylamine formation and its glutaminase activity, whereas its ability to catalyze ammonia-dependent phosphoribosylamine formation and to hydrolyze phosphoribosylpyrophosphate was increased. The site of reaction with 6-diazo-5-oxo-L-norleucine was the NH2-terminal cysteine residue. The NH2-terminal sequence of the B. subtilis enzyme was homologous with that of the corresponding amidotransferase from Escherichia coli, for which the NH2-terminal cysteine is also essential for glutamine utilization (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536). The fact that the metal-free E. coli amidotransferase contains a glutamine-utilizing structure that is very similar to that found in B. subtilis amidotransferase, which contains an essential [4Fe-4S] center, indicates that the iron-sulfur center probably plays no role in glutamine utilization.  相似文献   

5.
The oxygen-dependent inactivation of glutamine phosphoribosylpyrophosphate amidotransferase (ATase) is demonstrated in cell extracts of Bacillus subtilis. The rate of inactivation of ATase in vitro is apparently first order with respect to oxygen concentration and ATase activity. ATase inactivation in vitro (or in vivo) cannot be reactivated by a variety of reductants. ATase is significantly stabilized to oxygen-dependent inactivation in vitro in the presence of tetrasodium phosphoribosylpyrophosphate and glutamine together. The effects of the end product inhibitors, adenosine 5-monophosphate (AMP) and guanosine 5-monophosphate (GMP), on the stability of ATase are antagonistic. AMP stabilizes ATase, whereas GMP destabilizes the enzyme. The stability of ATase can be manipulated over wide ranges by variations in the AMP/GM ratio. The effects of AMP and GMP on the inactivation of ATase in vitro are very specific. ATase is partially inhibited by 1,10-phenanthroline, suggesting that the enzyme contains iron (or some other chelatable metal ion). The inactivation of ATase in vitro is proposed to present a model for the reconstruction of the inactivation of ATase in stationary-phase cells of B. subtilis.  相似文献   

6.
7.
Native Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase contains a [4Fe-4S] cluster in the diamagnetic (+2) state. The cluster is essential for catalytic function, even though amidotransferase does not catalyze a redox reaction. The ability of the Fe-S cluster to undergo oxidation and reduction reactions and the consequences of changes in the redox state of the cluster for enzyme activity were studied. Treatment of the enzyme with oxidants resulted in either no reaction or complete dissolution of the Fe-S cluster and loss of activity. A stable +3 oxidation state was not detected. A small amount of paramagnetic species, probably an oxidized 3Fe cluster, was formed transiently during oxidation. The native cluster was poorly reduced by dithionite, but it could be readily reduced to the +1 state by photoreduction with 5-deazaflavin and oxalate. The reduced enzyme did not display an EPR spectrum typical of [4Fe-4S] ferredoxins in the +1 state, unless it was prepared under denaturing conditions. M?ssbauer spectroscopy of reduced 57Fe-enriched amidotransferase confirmed that the cluster was in the +1 state, but the magnetic properties of the reduced cluster observed at 4.2 K indicated that it is characterized by a ground state spin S greater than or equal to 3/2. The midpoint potential of the +1/+2 couple was too low to measure accurately by conventional techniques, but it was below -600 mV, which is 100 mV more negative than reported for [4Fe-4S] clusters in bacterial ferredoxins. Fully reduced amidotransferase had about 40% of the activity of the native enzyme in glutamine-dependent phosphoribosylamine formation. The fact that both the +1 and +2 forms of the enzyme are active indicates that the cluster does not function as a site of reversible electron transfer during catalysis.  相似文献   

8.
1. Rat skeletal muscle AMP deaminase (AMP aminohydrolase, EC3.5.4.6) can be inactivated by incubation with the periodate-oxidized analogue of the enzyme inhibitor GTP. 2. Nucleoside triphosphates and KCl at high concentrations protect against inactivation, while ADP has no effect. 3. The inactivation can be reversed by the addition of GTP and amino acids and made irreversible by reduction with NaBH4. This indicates that, in the binding of the oxidized GTP to the enzyme, a Schiff base is formed between the aldehyde groups of the inhibitor and amino groups of the enzyme. 4. The kinetic properties of the reduced (oxidized GTP)-AMP deaminase derivative indicate that the loss of activity results from an increase in Km while no appreciable change in V is observed; consequently, the enzyme shows positive homotropic cooperativity even in the presence of optimal KCl concentration. 5. Since the treated enzyme shows kinetic properties similar to those of the native enzyme in the presence of GTP, and since the loss of sensitivity to GTP is directly proportional to the degree of inactivation, it is concluded that the oxidized GTP specifically modifies the binding sites for GTP. 6. Binding of the radioactive oxidized GTP shows that two binding sites for this reagent exist in the AMP deaminase molecule.  相似文献   

9.
Glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase (amidophosphoribosyltransferase), [EC 2.4.2.14] was purified 1,600-fold from rat liver. The preparation gave two protein bands on acrylamide gel electrophoresis, of which only the main band showed enzyme activity. The molecular weight of the enzyme was estimated to be 215,000, 200,000, and 195,000 by Sephadex G-150 gel filtration, polyacrylamide gel electrophoresis, and sucrose density grandient ultracentrifugation, respectively. The apparent Km values for glutamine and PRPP were 1.24 mM and 0.57 mM, respectively. The concentration-activity curve for PRPP changed from a hyperbolic to a sigmoidal form on addition of AMP or GMP, and this inhibition by AMP was prevented by increasing the PRPP concentration. In the presence of high concentrations of inorganic phosphate, the catalytic activity was decreased and the sensitivity to AMP inhibition was slightly increased. The molecular size of liver amidotransferase was not changed by the addition of PRPP, AMP, or 2-mercaptoethanol. The purified rat liver enzyme has a broad pH-range of activity between 6.5 and 8.5.  相似文献   

10.
The 5'-deoxy-5'-iodo-substituted analogs of adenosine and inosine are cytotoxic to tumor cells that have high activities of 5'-methylthioadenosine phosphorylase and purine nucleoside phosphorylase, respectively (Savarese, T.M., Chu, S-H., Chu, M.Y., and Parks, R. E., Jr. (1984) Biochem. Pharmacol. 34, 361-367). 5-Iodoribose 1-phosphate (5-IRib-1-P), the common intracellular metabolite of these 5'-iodonucleosides, has been synthesized enzymatically from 5'-deoxy-5'-iodoadenosine via adenosine deaminase from Aspergillus oryzae and human erythrocytic purine nucleoside phosphorylase. The purification and chemical properties of 5-IRib-1-P are described. The analog sugar phosphate inhibited purine nucleoside phosphorylase from human erythrocytes, phosphoglucomutase from rabbit muscle, and 5'-methylthioadenosine phosphorylase from Sarcoma 180 cells with Ki values of 26, 100, and 9 microM, respectively. Enzymes that react with 5-phosphoribosyl 1-pyrophosphate (P-Rib-PP), P-Rib-PP amidotransferase, hypoxanthine-guanine phosphoribosyltransferase, adenine phosphoribosyltransferase, and orotate phosphoribosyltransferase-orotidylate decarboxylase from extracts of Sarcoma 180 cells, were inhibited with Ki values of 49, 465, 307, and 275 microM, respectively. 5-IRib-1-P had no effect on P-Rib-PP synthetase. Since the Ki values of the analog sugar phosphate for 5'-methylthioadenosine phosphorylase and P-Rib-PP amidotransferase are much lower than the Km values of the natural substrates, Pi or P-Rib-PP which are reported to be present at nonsaturating concentrations under physiological conditions, these enzymes could be significantly inhibited by 5-IRib-1-P in intact cells.  相似文献   

11.
Redox-dependent modulation of aconitase activity in intact mitochondria   总被引:5,自引:0,他引:5  
Bulteau AL  Ikeda-Saito M  Szweda LI 《Biochemistry》2003,42(50):14846-14855
It has previously been reported that exposure of purified mitochondrial or cytoplasmic aconitase to superoxide (O(2)(-)(*) or hydrogen peroxide (H(2)O(2)) leads to release of the Fe-alpha from the enzyme's [4Fe-4S](2+) cluster and to inactivation. Nevertheless, little is known regarding the response of aconitase to pro-oxidants within intact mitochondria. In the present study, we provide evidence that aconitase is rapidly inactivated and subsequently reactivated when isolated cardiac mitochondria are treated with H(2)O(2). Reactivation of the enzyme is dependent on the presence of the enzyme's substrate, citrate. EPR spectroscopic analysis indicates that enzyme inactivation precedes release of the labile Fe-alpha from the enzyme's [4Fe-4S](2+) cluster. In addition, as judged by isoelectric focusing gel electrophoresis, the relative level of Fe-alpha release and cluster disassembly does not reflect the magnitude of enzyme inactivation. These observations suggest that some form of posttranslational modification of aconitase other than release of iron is responsible for enzyme inactivation. In support of this conclusion, H(2)O(2) does not exert its inhibitory effects by acting directly on the enzyme, rather inactivation appears to result from interaction(s) between aconitase and a mitochondrial membrane component responsive to H(2)O(2). Nevertheless, prolonged exposure of mitochondria to steady-state levels of H(2)O(2) or O(2)(-)(*) results in disassembly of the [4Fe-4S](2+) cluster, carbonylation, and protein degradation. Thus, depending on the pro-oxidant species, the level and duration of the oxidative stress, and the metabolic state of the mitochondria, aconitase may undergo reversible modulation in activity or progress to [4Fe-4S](2+) cluster disassembly and proteolytic degradation.  相似文献   

12.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

13.
Calcineurin (CaN) is a Ca2+-and calmodulin (CaM)-dependent serine/threonine phosphatase containing a dinuclear Fe-Zn center in the active site. Recent studies have indicated that CaN is a possible candidate for redox regulation. The inactivation of bovine brain CaN and of the catalytic CaN A-subunit from Dictyostelium by the vicinal dithiol reagents phenylarsine oxide (PAO) and melarsen oxide (MEL) and by H2O2 was investigated. PAO and MEL inhibited CaN with an IC50 of 3-8 microM and the inactivation was reversed by 2, 3-dimercapto-1-propane sulfonic acid. The treatment of isolated CaN with hydrogen peroxide resulted in a concentration-dependent inactivation. Analysis of the free thiol content performed on the H2O2 inactivated enzyme demonstrated that only two or three of the 14 Cys residues in CaN are modified. The inactivation of CaN by H2O2 could be reversed with 1,4-dithiothreitol and with the dithiol oxidoreductase thioredoxin. We propose that a bridging of two closely spaced Cys residues in the catalytic CaN A-subunit by PAO/MEL or the oxidative formation of a disulfide bridge by H2O2 involving the same Cys residues causes the inactivation. Our data implicate a possible involvement of thioredoxin in the redox control of CaN activity under physiological conditions. The low temperature EPR spectrum of the native enzyme was consistent with a Fe3+-Zn2+ dinuclear centre. Upon H2O2-mediated inactivation of the enzyme no significant changes in the EPR spectrum were observed ruling out that Fe2+ is present in the active enzyme and that the dinuclear metal centre is the target for the oxidative inactivation of CaN.  相似文献   

14.
An Escherichia coli strain that cannot scavenge hydrogen peroxide has been used to identify the cell processes that are most sensitive to this oxidant. Low micromolar concentrations of H2O2 completely blocked the biosynthesis of leucine. The defect was tracked to the inactivation of isopropylmalate isomerase. This enzyme belongs to a family of [4Fe-4S] dehydratases that are notoriously sensitive to univalent oxidation, and experiments confirmed that other members were also inactivated. In vitro and in vivo analyses showed that H2O2 directly oxidized their solvent-exposed clusters in a Fenton-like reaction. The oxidized cluster then degraded to a catalytically inactive [3Fe-4S] form. Experiments indicated that H2O2 accepted two consecutive electrons during the oxidation event. As a consequence, hydroxyl radicals were not released; the polypeptide was undamaged; and the enzyme was competent for reactivation by repair processes. Strikingly, in scavenger-deficient mutants, the H2O2 that was generated as an adventitious by-product of metabolism (<1 microm) was sufficient to damage these [4Fe-4S] enzymes. This result demonstrates that aerobic organisms must synthesize H2O2 scavengers to avoid poisoning their own pathways. The extreme vulnerability of these enzymes may explain why many organisms, including mammals, deploy H2O2 to suppress microbial growth.  相似文献   

15.
Purified glutamine phosphoribosylpyrophosphate amidotransferase from Bacillus subtilis bound to affinity adsorbents containing immobilized adenine nucleotides. Although the enzyme probably bound via an allosteric site at which AMP acts most effectively, 50 times more enzyme was bound by N6-(aminohexyl)-ATP-agarose than by N6-(aminohexyl)-AMP-agarose. The enzyme could be efficiently and specifically eluted from N6-(aminohexyl)-ATP-agarose with the substrate phosphoribosylpyrophosphate, which antagonizes AMP inhibition in kinetic experiments. Elution could also be effected by 0.5 m KCl or by chelation of Mg2+ ions. The usefulness of these techniques in purification of partially purified amidotransferase was demonstrated.  相似文献   

16.
The physiological regulation of mitochondrial respiration by NO has been reported to result from the reversible binding of NO to the two-electron reduced binuclear center (Fe(2+)(a3)-Cu(1+)(B)) of cytochrome c oxidase (CcO). Although the role of CcO and its derived catalytic intermediates in the catabolism of NO has been documented, little has been established for the enzyme in its fully oxidized state (Fe(3+)(a3)-Cu(2+)(B)). We report: (1) CcO, in its fully oxidized state, represents the major component of the mitochondrial electron transport chain for NO consumption as controlled by the binding of NO to its binuclear center. Phospholipid enhances NO consumption by fully oxidized CcO, whereas the consumption of NO is slowed down by membrane structure and membrane potential when CcO is embedded in the phospholipid bilayer. (2) In the presence of H(2)O(2), CcO was shown to serve as a mitochondria-derived NO peroxidase. A CcO-derived protein radical intermediate was induced and involved in the modulation of NO catabolism.  相似文献   

17.
The inactivation of sulfite oxidase, a molybdoenzyme containing the Mo cofactor, by arsenite and periodate was investigated. In contrast to ferricyanide (Gardlik, S., and Rajagopalan, K.V. (1991) J. Biol. Chem. 266, 4889-4895), neither of these reagents causes oxidation of the pterin ring of the Mo cofactor. Instead, inactivation by these reagents appears to involve attack on sulfhydryl groups at the active site of the enzyme. The inactivation of sulfite oxidase by arsenite was shown to be dependent on the presence of O2 and on the enzymatic oxidation of arsenite to arsenate. The inactivation was preventable by the presence of sulfite, or by the use of cytochrome c as the electron acceptor instead of O2. It is concluded that inactivation by arsenite is the result of arsenite displacement of Mo during enzymatic oxidation of arsenite to arsenate, when Mo transiently breaks its bond to protein or molybdopterin sulfhydryl(s) in order to provide a site for transfer of electrons to O2. Data indicate that arsenite is properly oriented to displace Mo only once every 20,800 turnovers, thus accounting for the slow rate of inactivation by this reagent. Inactivation of sulfite oxidase by periodate is believed to occur as the result of direct attack of periodate on the thiolate ligands of Mo, either those of the protein and/or molybdopterin, leading to Mo loss. Treatment of enzyme with even low levels of periodate resulted in loss of Mo and both sulfite:cytochrome c and sulfite:O2 activities. Molybdopterin of periodate-inactivated enzyme retained the ability to reconstitute nitrate reductase apoprotein in nit-1 extracts and the ability to reduce dichlorophenolindophenol, indicating that the pterin ring had not been oxidized.  相似文献   

18.
Phosphorothioate analogues of phosphoribosyldiphosphate (P-Rib-PP) can act as substrates of quinolinate phosphoribosyltransferase. The order of effectiveness as substrates, with Mg2+ as the activating metal ion, was P-Rib-PP greater than P-Rib-PPbeta S greater than P-Rib-PP alpha S(Sp) greater than P-Rib-PP alsph S(Rp). Cd2+ was more effective than Mg2+ with the Rp diastereommer.  相似文献   

19.
The kinetic study of fluorescence stopped-flow method suggested that the interaction between lipoxygenase and H2O2 is consistent with a simple irreversible one-step mechanism. The activation energy of the reaction was 7.2 kcal/mol. Participation of an ionizable group with pK about 8.8, possibly a histidine residue, was suggested from the pH-dependence of the rate constant. No further fluorescence quenching of lipoxygenase was observed when the product was added to the lipoxygenase solution before mixing the lipoxygenase and H2O2 solutions. The fluorescence quenching of lipoxygenase by H2O2 was in parallel with the inactivation of the enzyme. Hydroperoxylinoleic acid strongly protects the inactivation of lipoxygenase caused by H2O2. These results are consistent with an interpretation that OH- and/or O- - are produced when the iron of the enzyme is oxidized by H2O2, which in turn will attack some amino acid essential for the enzyme activity. The pH-dependence of the inactivation rate constant of photooxidation of lipoxygenase sensitized by methylene blue indicated that an ionizable group with pK about 8.8 is concerned with the enzymatic activity. In contrast to the inactivation of lipoxygenase by H2O2, the product protected the inactivation of the enzyme by photooxidation only at high concentration.  相似文献   

20.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号