首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ovalbumin assumes a highly ordered molten-globule conformation at pH 2.2. To investigate whether or not such structural nature is related to the existence of an intrachain native disulfide bond, the structural characteristics of disulfide-reduced ovalbumin at the acidic pH were compared with those of the native disulfide-intact protein by a variety of analytical approaches. The disulfide-reduced protein was found to assume a partially denatured molten globule-like conformation similar to the disulfide-intact counterpart as analyzed by the CD and intrinsic tryptophan fluorescence spectra and by the binding of a hydrophobic probe of anilino-1-naphthalene-8-sulfonate. The results from size-exclusion chromatography also showed that the disulfide-reduced and disulfide-intact proteins have essentially the same compact, native-like hydrodynamic volume. The disulfide-reduced protein was, however, highly sensitive to proteolysis by pepsin at the acidic pH under the proteolytic conditions in which the disulfide-intact protein was almost completely resistant. Furthermore, on a differential scanning calorimeter analysis the disulfide-reduced protein had an endothermic transition at a much lower temperature (Tm = 48.5 degrees C) than the disulfide-intact protein (Tm = 57.2 degrees C). Taken together, we concluded that the intrachain disulfide bond should not be directly related to the highly ordered molten-globule conformation of ovalbumin, but that its conformational stability depends on the presence of the disulfide bond.  相似文献   

2.
The conformational stability and the folding process of alpha, beta and Psi bovine trypsin at pH 3.0 followed by circular dichroism (CD) and size exclusion in HPLC have been analyzed as a function of urea concentration. The thermodynamic stability for a and b are deltaG = 15.91 +/- 0.28 kcal/mol, deltaG = 15.54 +/- 2.39 kcal/mol. respectively, and y trypsin is deltaG = 16.10 +/- 2.51 kcal/mol. The transition curves for alpha, beta and Psi forms suggest a molten globule state.  相似文献   

3.
Several lines of functional evidence have shown that anion binding to a nonsynergistic site is a prerequisite for the anion-mediated iron release mechanism of transferrins. We report here structural evidence of the location of sulfate anion binding sites of the ovotransferrin N-lobe via the 1.90 A resolution apo crystal structure. The crystals were grown in an ammonium sulfate solution and belonged to space group P6(3)22 with the following unit cell dimensions: a = b = 125.17 A and c = 87.26 A. The structural determination was performed by isomorphous replacement, using Pt and Au derivatives. The structure refinement gave an R-factor of 0.187 in the resolution range of 7.0-1.90 A for the final model. From the electron density map, the existence of four bound SO(4)(2)(-) anions was detected. Three of them that exhibited reasonably low B-factors were all located in the opened interdomain cleft (sites 1-3). In site 1, the bound anion directly interacts with an Fe(3+)-coordinating ligand; SO(4) O1 and SO(4) O3 form hydrogen bonds with His250 NE2. Oxygen atom O3 of the same sulfate anion makes a hydrogen bond with Ser91 OG in a hinge strand. The sulfate anion in site 2 partially occupies the synergistic anion binding sites; SO(4) O2 and SO(4) O3 are hydrogen bonded to Arg121 NE and NH2, respectively, both of which are consensus anchor groups for CO(3)(2)(-) anion in holotransferrins. The former oxygen atom of SO(4)(2)(-) is also hydrogen bonded to Ser122 N, which forms a hydrogen bond with Fe(3+)-coordinating ligand Asp60 OD2 in holotransferrins. Some of the SO(4)(2)(-) oxygen atoms in sites 1 and 2 interact indirectly through H(2)O molecules with functionally important protein groups, such as the other Fe(3+)-coordinating ligands, Tyr92 OH and Tyr191 OH, and a dilysine trigger group, Lys209 NZ. In site 3, SO(4) O1 and SO(4) O4 form hydrogen bonds with Ser192 OG and Tyr191 N, respectively, and SO(4) O2 forms hydrogen bonds with Ser192 N and Ser192 OG. These structural data are consistent with the view that the anion bindings to the interdomain cleft, especially to sites 1 and 2, play crucial roles in the domain opening and synergistic carbonate anion release in the iron release mechanism of the ovotransferrin N-lobe.  相似文献   

4.
The differential properties of anion-mediated Fe(3+) release between the N- and C-lobes of transferrins have been a focus in transferrin biochemistry. The structural and kinetic characteristics for isolated lobe have, however, been documented with the N-lobe only. Here we demonstrate for the first time the quantitative Fe(3+) release kinetics and the anion-binding structure for the isolated C-lobe of ovotransferrin. In the presence of pyrophosphate, sulfate, and nitrilotriacetate anions, the C-lobe released Fe(3+) with a decelerated rate in a single exponential progress curve, and the observed first order rate constants displayed a hyperbolic profile as a function of the anion concentration. The profile was consistent with a newly derived single-pathway Fe(3+) release model in which the holo form is converted depending on the anion concentration into a "mixed ligand" intermediate that releases Fe(3+). The apo C-lobe was crystallized in ammonium sulfate solution, and the structure determined at 2.3 A resolution demonstrated the existence of a single bound SO(4)(2-) in the interdomain cleft, which interacts directly with Thr(461)-OG1, Tyr(431)-OH, and His(592)-NE2 and indirectly with Tyr(524)-OH. The latter three groups are Fe(3+)-coordinating ligands, strongly suggesting the facilitated Fe(3+) release upon the anion occupation at this site. The SO(4)(2-) binding structure supported the single-pathway kinetic model.  相似文献   

5.
Okamoto I  Mizutani K  Hirose M 《Biochemistry》2004,43(34):11118-11125
Iron-liganding-residue mutants of ovotransferrin, Y191F and Y524F, were investigated for their Fe(3+)-binding properties. The absorption spectrum and urea gel electrophoresis verified the single iron binding on the C- and N-lobes for Y191F and Y524F, respectively. A newly developed competitive Fe(3+)-binding analysis, in which equimolar Y191F and Y524F are mixed with less Fe(3+) than saturation, enabled us to quantitatively determine the lobe preference for initial iron entry as the ratio (alpha value) of N-lobe over C-lobe. The alpha value estimated on the basis of a kinetic model was highly dependent on pH; within a pH range from 6.5 to 9.0, alpha was increased from 2 to 5 on lowering pH with an apparent sigmoid curve. On differential scanning calorimetry, single thermal transition was observed around 61 degrees C for the apo forms of Y191F, Y524F, and wild-type ovotransferrin. The Fe(3+)-loaded mutants, however, showed dual transitions at 62.4 and 82.1 degrees C in Y191F and 66.4 and 76.0 degrees C in Y524F. According to the DeltaG(AB) value that is defined as the free energy change in a target lobe induced by the iron binding on the counter lobe, marked stabilization effects by interlobe interactions were found to be induced during the major iron-binding process: upon the primary N-lobe iron binding in the iron-free C-lobe (DeltaG(AB), -2.25 kcal/mol) and upon the secondary C-lobe iron binding in the monoferric N-lobe (DeltaG(AB), -6.45 kcal/mol).  相似文献   

6.
The kinetics of pyrophosphate-induced iron release from diferric ovotransferrin were studied spectrophotometrically at 37 degrees C in 0.1 M HEPES, pH 7.0. At high pyrophosphate concentrations, the kinetics are biphasic, indicating that the rates of iron release from the two, presumably noninteracting iron-binding sites of ovotransferrin are different. The pseudo-first-order rate constants for iron release from both the fast and slow sites exhibit a hyperbolic dependence on pyrophosphate concentrations. The data suggest that pyrophosphate forms complexes with the two iron-binding sites of ovotransferrin prior to iron removal. The stability constants of the complex formed with the fast site (Keqf) and slow site (Keqs) are 8.3 M-1 and 40.4 M-1, respectively. The first-order rate constants for the dissociation of ferric-pyrophosphate from the fast site (k2f) and the slow site (k2s) are 0.062 and 0.0044 min-1, respectively. Results from urea gel electrophoresis studies suggest that iron is released at a much faster rate from the N-terminal binding site of ovotransferrin. At high pyrophosphate concentration, only C-monoferric-ovotransferrin is detected during the course of iron release. At low pyrophosphate concentration, however, a detectable amount of N-monoferric-ovotransferrin is accumulated. This result is consistent with the kinetic finding that the site with a higher k2 (0.062 min-1) has a lower affinity toward pyrophosphate (Keq = 8.3 M-1) whereas the site with a lower k2 (0.0044 min-1) has a higher affinity for pyrophosphate (Keq = 40.4 M-1).  相似文献   

7.
The dissociation of apo- and metal-bound human copper-zinc superoxide dismutase (SOD1) dimers induced by the chaotrope guanidine hydrochloride (GdnHCl) or the reductant Tris(2-carboxyethyl)phosphine (TCEP) has been analyzed using analytical ultracentrifugation. Global fitting of sedimentation equilibrium data under native solution conditions (without GdnHCl or TCEP) demonstrate that both the apo- and metal-bound forms of SOD1 are stable dimers. Sedimentation velocity experiments show that apo-SOD1 dimers dissociate cooperatively over the range 0.5-1.0 M GdnHCl. In contrast, metal-bound SOD1 dimers possess a more compact shape and dissociate at significantly higher GdnHCl concentrations (2.0-3.0 M). Reduction of the intrasubunit disulfide bond within each SOD1 subunit by 5-10 mM TCEP promotes dissociation of apo-SOD1 dimers, whereas the metal-bound enzyme remains a stable dimer under these conditions. The Cys-57 --> Ser mutant of SOD1, a protein incapable of forming the intrasubunit disulfide bond, sediments as a monomer in the absence of metal ions and as a dimer when metals are bound. Taken together, these data indicate that the stability imparted to the human SOD1 dimer by metal binding and the formation of the intrasubunit disulfide bond are mediated by independent molecular mechanisms. By combining the sedimentation data with previous crystallographic results, a molecular explanation is provided for the existence of different SOD1 macromolecular shapes and multiple SOD1 dimeric species with different stabilities.  相似文献   

8.
The conformational stability of the Schizolobium parahyba chymotrypsin inhibitor (SPCI) was investigated based on conformational changes and inhibitory activity in the presence of chaotropic and stabilizing agents. At 90°C, the half-lifetime of SPCI was 154 min, while in the presence of 1 M KCl and 20% PEG 20,000, it was drastically reduced to 6 and 3 min, respectively. In contrast, at 90°C, the SPCI structure remained unaltered with the addition of 1 mM DTT and 56% glycerol. The reduction of the two disulfide bonds caused conformational changes in the SPCI without altering the inhibitory activity, suggesting that disulfide bonds are irrelevant to the maintenance of SPCI conformation. Unfolded structures were formed in the presence of 6 M GdnHCl, while in the presence of 8 M urea, destabilization was due to peptide bond rupture. These results suggest that the thermal inactivation of SPCI involves conformational changes and that hydrophobic and electrostatic interactions play a significant role, while the disulfide bonds are of secondary importance in maintaining the high thermal stability of SPCI.  相似文献   

9.
Hen ovalbumin contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryl groups (Cys11, Cys30, Cys367, and Cys382) in a single polypeptide chain of 385 amino acid residues. To investigate whether or not such a structure is shared by related avian species, the contents of disulfide-involved half-cystine residues and their positions in the primary structure of ovalbumins from five species were compared with those of hen ovalbumin. Ovalbumins were alkylated with a fluorescent dye, IAEDANS, under disulfide-reduced and disulfide-intact conditions and digested with a number of proteolytic enzymes. The sequences were deduced from peptides containing half-cystine residues labeled with the fluorescent dye. The results showed that the number of free cysteine sulfhydryl groups of ovalbumins was different among the species, three for guinea fowl and turkey (Cys11, Cys367, and Cys382); and two for Pekin duck, mallard duck, and Emden goose (Cys11 and Cys331). On the other hand, a single intrachain disulfide bond could be identified from ovalbumins of five species using a combination of peptide mapping and N-terminal amino acid sequencing analysis under reduced and non-reduced conditions, in which the intrachain disulfide bond was like that of hen ovalbumin (Cys73-Cys120). The results also indicated that the variations in amino acid sequences on these peptides containing half-cystine residues bear a close relationship with the phylogeny of the six species.  相似文献   

10.
Transferrins bind Fe3+ very tightly in a closed interdomain cleft by the coordination of four protein ligands (Asp60, Tyr92, Tyr191, and His250 in ovotransferrin N-lobe) and of a synergistic anion, physiologically bidentate CO32-. Upon Fe3+ uptake, transferrins undergo a large scale conformational transition: the apo structure with an opening of the interdomain cleft is transformed into the closed holo structure, implying initial Fe3+ binding in the open form. To solve the Fe3+-loaded, domain-opened structure, an ovotransferrin N-lobe crystal that had been grown as the apo form was soaked with Fe3+-nitrilotriacetate, and its structure was solved at 2.1 A resolution. The Fe3+-soaked form showed almost exactly the same overall open structure as the iron-free apo form. The electron density map unequivocally proved the presence of an iron atom with the coordination by the two protein ligands of Tyr92-OH and Tyr191-OH. Other Fe3+ coordination sites are occupied by a nitrilotriacetate anion, which is stabilized through the hydrogen bonds with the peptide NH groups of Ser122, Ala123, and Gly124 and a side chain group of Thr117. There is, however, no clear interaction between the nitrilotriacetate anion and the synergistic anion binding site, Arg121.  相似文献   

11.
Gupta R  Ahmad F 《Biochemistry》1999,38(8):2471-2479
Determination of protein stability (DeltaGD0) from the conformational transition curve induced by a chemical denaturant is problematic; for different values of DeltaGD0, the value of the Gibbs energy change on denaturation (DeltaGD) in the absence of the denaturant are obtained when different extrapolation methods are used to analyze the same set of (DeltaGD, denaturant concentration) data [Pace, C. N. (1986) Methods Enzymol. 131, 266-280]. We propose a practical solution to this problem and use it to test the dependence of DeltaGD of lysozyme, ribonuclease-A, and cytochrome-c on [urea], the molar urea concentration. This method employs (i) measurements of the urea-induced denaturation in the presence of different guanidine hydrochloride (GdnHCl) concentrations which by themselves disrupt the native state of the protein at the same temperature and pH at which denaturations by urea and GdnHCl have been measured; (ii) estimation of DeltaGDcor, the value of DeltaGD corrected for the effect of GdnHCl on the urea-induced denaturation using the relation (DeltaGDcor = DeltaGD + mg [GdnHCl] = DeltaGD0 - mu [urea], where mg and mu are the dependencies of DeltaGD on [GdnHCl] and [urea], respectively) whose parameters are all determined from experimental denaturation data; and (iii) mapping of DeltaGDcor onto the DeltaGD versus [urea] plot obtained in the absence of GdnHCl. Our results convincingly show that (i) [urea] dependence of DeltaGD of each protein is linear over the full concentration range; (ii) the effect of urea and GdnHCl on protein denaturation is additive; and (iii) KCl affects the urea-induced denaturation if the native protein contains charge-charge interaction and/or anion binding site, in a manner which is consistent with the crystal structure data.  相似文献   

12.
The three-dimensional crystal structure of hen apo-ovotransferrin has been solved by molecular replacement and refined by simulated annealing and restrained least squares to a 3.0-A resolution. The final model, which comprises 5312 protein atoms (residues 1 to 686) and 28 carbohydrate atoms (from two monosaccharides attached to Asn(473)), gives an R-factor of 0.231 for the 11,989 observed reflections between 20.0- and 3.0-A resolution. In the structure, both empty iron binding clefts are in the open conformation, lending weight to the theory that Fe(3+) binding or release in transferrin proceeds via a mechanism that involves domain opening and closure. Upon opening, the domains rotate essentially as rigid bodies. The two domains of the N-lobe rotate away from one another by 53 degrees, whereas the C-lobe domains rotate away each another by 35 degrees. These rotations take place about an axis that passes through the two beta-strands, linking the domains. The domains of each lobe make different contacts with one another in the open and closed forms. These contacts form two interdomain interfaces on either side of the rotation axis, and domain opening or closing produces a see-saw motion between these two alternative close-packed interfaces. The interdomain disulfide bridge (Cys(478)-Cys(671)), found only in the C-lobe, may restrict domain opening but does not completely prevent it.  相似文献   

13.
The transferrins (TF) are a family of bilobal glycoproteins that tightly bind ferric iron. Each of the homologous N- and C-lobes contains a single iron-binding site situated in a deep cleft. Human serum transferrin (hTF) serves as the iron transport protein in the blood; circulating transferrin binds to receptors on the cell surface, and the complex is internalized by endocytosis. Within the cell, a reduction in pH leads to iron release from hTF in a receptor-dependent process resulting in a large conformational change in each lobe. In the hTF N-lobe, two critical lysines facilitate this pH-dependent conformational change allowing entry of a chelator to capture the iron. In the C-lobe, the lysine pair is replaced by a triad of residues: Lys534, Arg632, and Asp634. Previous studies show that mutation of any of these triad residues to alanine results in significant retardation of iron release at both pH 7.4 and pH 5.6. In the present work, the role of the three residues is probed further by conversion to the residues observed at the equivalent positions in ovotransferrin (Q-K-L) and human lactoferrin (K-N-N) as well as a triad with an interchanged lysine and arginine (K534R/R632K). As expected, all of the constructs bind iron and associate with the receptor with nearly the same K(D) as the wild-type monoferric hTF control. However, interesting differences in the effect of the substitutions on the iron release rate in the presence and absence of the receptor at pH 5.6 are observed. Additionally, titration with KCl indicates that position 632 must have a positively charged residue to elicit a robust rate acceleration as a function of increasing salt. On the basis of these observations, a model for iron release from the hTF C-lobe is proposed. These studies provide insight into the importance of charge and geometry of the amino acids at these positions as a partial explanation for differences in behavior of individual TF family members, human serum transferrin, ovotransferrin, and lactoferrin. The studies collectively highlight important features common to both the N- and C-lobes of TF and the critical role of the receptor in iron release.  相似文献   

14.
The conformational stability of RNase Rs was determined with chemical and thermal denaturants over the pH range of 1-10. Equilibrium unfolding with urea showed that values of D(1/2) (5.7 M) and DeltaG(H(2)O) (12.8 kcal/mol) were highest at pH 5.0, its pI and the maximum conformational stability of RNase Rs was observed near pH 5.0. Denaturation with guanidine hydrochloride (GdnHCl), at pH 5.0, gave similar values of DeltaG(H(2)O) although GdnHCl was 2-fold more potent denaturant with D(1/2) value of 3.1 M. The curves of fraction unfolded (f(U)) obtained with fluorescence and CD measurements overlapped at pH 5.0. Denaturation of RNase Rs with urea in the pH range studied was reversible but the enzyme denatured irreversibly >pH 11.0. Thermal denaturation of RNase Rs was reversible in the pH range of 2.0-3.0 and 6.0-9.0. Thermal denaturation in the pH range 4.0-5.5 resulted in aggregation and precipitation of the protein above 55 degrees C. The aggregate was amorphous or disordered precipitate as observed in TE micrographs. Blue shift in emission lambda(max) and enhancement of fluorescence intensity of ANS at 70 degrees C indicated the presence of solvent exposed hydrophobic surfaces as a result of heat treatment. Aggregation could be prevented partially with alpha-cyclodextrin (0.15 M) and completely with urea at concentrations >3 M. Aggregation was probably due to intermolecular hydrophobic interaction favored by minimum charge-charge repulsion at the pI of the enzyme. Both urea and temperature-induced denaturation studies showed that RNase Rs unfolds through a two-state F right arrow over left arrow U mechanism. The pH dependence of stability described by DeltaG(H(2)O) (urea) and DeltaG (25 degrees C) suggested that electrostatic interactions among the charged groups make a significant contribution to the conformational stability of RNase Rs. Since RNase Rs is a disulfide-containing protein, the major element for structural stability are the covalent disulfide bonds.  相似文献   

15.
Iron release from ovotransferrin in acidic media (3 < pH < 6) occurs in at least six kinetic steps. The first is a very fast (相似文献   

16.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

17.
Functionally active elongation factor Ts (EF-Ts) from Thermus thermophilus forms a homodimer. The dimerization interface of EF-Ts is composed of two antiparallel beta-sheets that can be connected by an intermolecular disulfide bond. The stability of EF-Ts from T. thermophilus in the presence and absence of the intermolecular disulfide bond was studied by differential scanning calorimetry and circular dichroism. The ratio of the van't Hoff and calorimetric enthalpies, delta H(vH)/delta H(cal), indicates that EF-Ts undergoes thermal unfolding as a dimer independently of the presence or absence of the disulfide bond. This can be concluded from (1) the presence of residual secondary structure above the thermal transition temperature, (2) the absence of concentration dependence, which would be expected for dissociation of the dimer prior to unfolding of the monomers, and (3) a relatively low heat capacity change (delta Cp) upon unfolding. The retained dimeric structure of the thermally denatured state allowed for the determination of the effect of the intermolecular disulfide bond on the conformational stability of EF-Ts, which is deltadelta G(S-S,SH HS) = 10.5 kJ/mol per monomer at 72.5 degrees C. The possible physiological implications of the dimeric EF-Ts structure and of the intersubunit disulfide bond for the extreme conformational stability of proteins in thermophiles are discussed.  相似文献   

18.
The extreme thermal stabilization achieved by the introduction of a disulfide bond (G8C/N60C) into the cysteine-free wild-type-like mutant (pWT) of the neutral protease from Bacillus stearothermophilus[Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R & Eijsink VG (1997) J Biol Chem272, 11152-11156] was attributed to the fixation of the loop region 56-69. In this study, the role of calcium ions in the guanidine hydrochloride (GdnHCl)-induced unfolding and autoproteolysis kinetics of pWT and G8C/N60C was analyzed by fluorescence spectroscopy, far-UV CD spectroscopy and SDS/PAGE. First-order rate constants (kobs) were evaluated by chevron plots (ln kobs vs. GdnHCl concentration). The kobs of unfolding showed a difference of nearly six orders of magnitude (DeltaDeltaG# = 33.5 kJ.mol(-1) at 25 degrees C) between calcium saturation (at 100 mM CaCl2) and complete removal of calcium ions (in the presence of 100 mM EDTA). Analysis of the protease variant W55F indicated that calcium binding-site III, situated in the critical region 56-69, determines the stability at calcium ion concentrations between 5 and 50 mM. In the chevron plots the disulfide bridge in G8C/N60C shows a similar effect compared with pWT as the addition of calcium ions, suggesting that the introduced disulfide bridge fixes the region (near calcium binding-site III) that is responsible for unfolding and subsequent autoproteolysis. Owing to the presence of the disulfide bridge, the DeltaDeltaG# is 13.2 kJ.mol(-1) at 25 degrees C and 5 mM CaCl2. Non-linear chevron plots reveal an intermediate in unfolding probably caused by local unfolding of the loop 56-69. The occurrence of this intermediate is prevented by calcium concentrations of > 5 mM, or the introduction of the disulfide bridge G8C/N60C.  相似文献   

19.
Ribonuclease T1 has two disulfide bonds linking cysteine residues 2-10 and 6-103. We have prepared a derivative of ribonuclease T1 in which one disulfide bond is broken and the cysteine residues carboxymethylated, (2-10)-RCM-T1, and three derivatives in which both disulfides are broken and the cysteine residues reduced, R-T1, carboxamidomethylated, RCAM-T1, or carboxymethylated, RCM-T1. The RNA hydrolyzing activity of these proteins has been measured, and urea and thermal denaturation studies have been used to determine conformational stability. The activity, melting temperature, and conformational stability of the proteins are: ribonuclease T1 (100%, 59.3 degrees C, 10.2 kcal/mol), (2-10)-RCM-T1 (86%, 53.3 degrees C, 6.8 kcal/mol), R-T1 (53%, 27.2 degrees C, 3.0 kcal/mol), RCAM-T1 (43%, 21.2 degrees C, 1.5 kcal/mol), and RCM-T1 (35%, 16.6 degrees C, 0.9 kcal/mol). Thus, the conformational stability is decreased by 3.4 kcal/mol when one disulfide bond is broken and by 7.2-9.3 kcal/mol when both disulfide bonds are broken. It is quite remarkable that RNase T1 can fold and function with both disulfide bonds broken and the cysteine residues carboxymethylated. The large decrease in the stability is due mainly to an increase in the conformational entropy of the unfolded protein which results when the constraints of the disulfide bonds on the flexibility are removed. We propose a new equation for predicting the effect of a cross-link on the conformational entropy of a protein: delta Sconf = -2.1 - (3/2)R 1n n, where n is the number of residues between the side chains which are cross-linked. This equation gives much better agreement with experimental results than other forms of this equation which have been used previously.  相似文献   

20.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号